Avisoft-SASLab Pro version 5.2
Sound Analysis and Synthesis Laboratory
for Microsoft Windows XP / Vista / 7 / 8 / 8.1 / 10

Avisoft Bioacoustics e.K.
Schönfließer Str. 83
16548 Glienicke/Nordbahn
GERMANY

www.avisoft.com
support@avisoft.com
LICENSE AGREEMENT

This is a legal agreement between Avisoft Bioacoustics and the buyer. By operating this software, the buyer accepts the terms of this agreement.

1. Avisoft Bioacoustics (the “Vendor”) grants to the Buyer a non-exclusive license to operate the provided software (the “Software”) on ONE computer at a time.

2. The Software is the exclusive property of the Vendor. The Software and all documentation are copyright Avisoft Bioacoustics, all rights reserved.

3. The Software is warranted to perform substantially in accordance with the operating manual for a period of 24 months from the date of shipment.

4. EXCEPT AS SET FORTH IN THE EXPRESS WARRANTY ABOVE, THE SOFTWARE IS PROVIDED WITH NO OTHER WARRANTIES, EXPRESS OR IMPLIED. THE VENDOR EXCLUDES ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

5. The Vendor’s entire liability and the Buyer’s exclusive remedy shall be, at the Vendor’s SOLE DISCRETION, either (1) return of the Software and refund of purchase price or (2) repair or replacement of the Software.

6. THE VENDOR WILL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES HEREUNDER, INCLUDING, BUT NOT LIMITED TO, LOSS OF PROFITS, LOSS OF USE, OR LOSS OF DATA OR INFORMATION OF ANY KIND, ARISING OUT OF THE USE OF OR INABILITY TO USE THE SOFTWARE IN NO EVENT SHALL THE VENDOR BE LIABLE FOR ANY AMOUNT IN EXCESS OF THE PURCHASE PRICE.

7. This agreement is the complete and exclusive agreement between the Vendor and the Buyer concerning the Software.
CONTENTS

INTRODUCTION .. 18

HARD- & SOFTWARE REQUIREMENTS ... 18

INSTALLATION PROCEDURE ... 18

PROGRAM DESCRIPTION ... 18

Getting started .. 19

THE MAIN WINDOW ... 21

File ... 21

Open ... 21
 Browse ... 21
 File Open Settings .. 22
 Close ... 24
 Save ... 24

Save As ... 25

Rename ... 25

Rename by text module / Define text module > .. 25

Record ... 26

Real Time Spectrogram ... 26
Sound card settings .. 27
Playback .. 28
Playback settings ... 28
Heterodyned playback mode .. 29
Play through RECORDER USGH / UltraSoundGate Player 29
Route UltraSoundGate DIO track (LTC) to the right playback channel 30
Configuration > .. 30
Open .. 30
Save .. 30
Save As .. 30
Reset .. 30
Save mode on exit > ... 31
Save current configuration automatically ... 31
Prompt ... 31
Open mode on start > ... 31
Open last configuration automatically ... 31
Launch Open dialog ... 31
DDE Command Interface ... 32
Specials > ... 32
Previous file ... 32
Next file .. 32
Previous/Next file command settings .. 33
Auto Browse ... 33
Delete File ... 33
Re-assembling settings ... 33
Import-Format .. 34
File properties .. 35
Add channel(s) from file ... 35
Add silent channel ... 36
Remove channels ... 36
Add neighbour channels automatically ... 36
Swap channels .. 36
Insert .wav file ... 36
Append .wav file .. 36
Join .wav files ... 36
Join .wav files from a playlist ... 37
UltraDoundGate DIO .. 37
Shred into numbered files .. 38
Envelope ... 38
Save Envelope Curve ... 38
Copy Envelope Curve ... 38
Envelope Curve Export Parameters .. 38
Marking time sections ...43

Analyze ..44

Create spectrogram ..44
Spectrogram-Parameters ..44
Spectrogram Overview ..49

Overview Parameters ..50
Apply spectrogram window parameters51
Normalize Envelope Curve ..51
Show Y axis grid ...51
Frequency cursor ...51
Step waveform display mode51
Fast Envelope Curve display51
Time axis format ...51
One-dimensional transformations53
Time signal ..53
Amplitude spectrum ..53
Power spectrum (logarithmic)54
Power spectrum (averaged)54
Power spectrum (spectrum level units)54
Power spectrum (level units, averaged)54
Octave Analysis ...55
Third-Octave Analysis ..55
Autocorrelation ...55
Cepstrum ...55
Cross-correlation (stereo) ...55
Cross-correlation (2 files) ...56
Transfer function (2 stereo channels)56
Frequency response, sine sweep mono56
Frequency response, sine sweep stereo57
Histogram ...57
XY Plot ...57
XYZ Plot ...57
Impulse Density Histogram... 57
Impulse Rate .. 58
Lorenz plot ... 58
Envelope (analytic signal) ... 59
Instantaneous frequency .. 59
Zero-crossing analysis ... 59
Root mean square (linear) / (logarithmic) ... 59
Envelope.. 60
Gate function .. 60
Gate function (signal/silence duration) .. 60
Gate function (interpulse interval) .. 60
Pulse Train Analysis ... 61
Settings .. 62
Specials > ... 72
Copy energy of marked section ... 72
Copy RMS of marked section .. 72
Copy peak-to-peak of marked section .. 72
Time-delay-of-arrival (TDOA) measurements 72
Detect waveform events and create section labels 73
Detect and classify waveform events .. 73
Scan for template spectrogram patterns .. 74

Edit .. 76

Undo ... 76
Redo .. 76
Copy .. 76
Paste .. 76
Cut .. 76
Trim .. 76
Change Volume .. 76
Delete ... 78
Delete with taper .. 78
Insert silence .. 78
Insert silent margins .. 78
Mix .. 78
Reverse .. 78
Info about Clipboard .. 78
Compress > ... 80
Remove silent sections ... 80
Settings ... 80
Remove gaps between section labels ... 80
Remove gaps between (section) labels and keep labels 81
Expanded view (restored time structure) 81
Save segments into numbered .wav files 81
Synthesizer > .. 81
Synthesizer (dialog-based) ... 81
Synthesizer (graphically) .. 81
Insert white noise.. 82
Insert pink noise ... 82
Insert time code / pulse train / single pulse 82
Filter > .. 82
IIR Time Domain Filter ... 82
FIR Time Domain Filter ... 84
Frequency Domain Transformations (FFT) 87
Noise Reduction ... 89
Format > .. 90
Stereo->Mono ... 90
8<->16Bit Conversion ... 90
Change Fileheader Sampling Frequency / Time Expansion 90
Sampling frequency conversion ... 90
Restore the original time scale of a time-expanded recording 91
Time/Pitch Conversion .. 91
Tools .. 93
Zoom .. 93
Unzoom .. 93
Zoom Previous ... 93
ZoomIn .. 93
ZoomOut ... 93
Remove Marker .. 93
Set Marker Duration .. 93
Copy Measurement values t1, t2 .. 94
Cursor linkage between Instances ... 94
Labels > .. 94
Insert label ... 94
Insert section label ... 94
Insert section label from marker .. 94
Create section labels from waveform events 94
Create labels from UltraSoundGate DI ... 96
Georeference labels / .wav files .. 97
Delete all labels .. 98
Filter labels ... 99
(Re-)Number labels ... 99
Label settings .. 99
Import section labels from .txt file .. 99
Import time-frequency labels from .txt file ... 99
Export labels into .txt file .. 100
Label statistics .. 100
Export label data .. 100
Save labeled sections into numbered .wav files 101
Save labeled sections into a single .wav file ... 101
Save labeled sections of same class into single .wav files 101
Classify labeled sections .. 101
Detect and Classify waveform events ... 106
Classify Element Sequences .. 106
Section label grid .. 108
DDE parameters / Log-file .. 108
Touch Screen Optimizations ... 108
Calibration .. 110
Batch processing .. 114
Real-time processing .. 121

Metadata .. 123
dXML database records > ... 123
mXML measurements > ... 125
View XML RIFF chunks > .. 126
Select XML viewer... .. 126
bext (BWF) Metadata... > .. 127
Edit ... 127
Batch Edit .. 127
Create Metadatabase.. 127
On new sound file > .. 134
Spectrogram ... 134
One-dimensional transformation .. 134
Pulse Train Analysis ... 134
Remove silent sections .. 134
On program start > .. 134
Real-time spectrograph .. 134
Graphic synthesizer .. 134
Launch Real-time spectrum display ... 134
Launch Real-time processing tool .. 134
Open last sound file ... 134
Keyboard Shortcuts and Popup Menu ... 134

THE SPECTROGRAM WINDOW .. 135

File .. 135

Print Spectrogram .. 135
Copy Spectrogram .. 135

Save Spectrogram Image ... 135
Copy entire Spectrogram Image ... 135
Save entire Spectrogram Image .. 135

Export-Parameters .. 136
Data Export > .. 139
Copy measured value ... 139
Copy t1, t2 .. 139
Copy energy of marked section ... 139
DDE Parameters / Log File .. 139
Copy ASCII Spectrum .. 142
Copy ASCII Spectrogram .. 142
Save ASCII/Binary Spectrogram .. 142
Copy ASCII-Frequency versus time 142
Copy Envelope into curve-window 142
Copy Spectrum into curve-window 142
Mean Spectrum of entire spectrogram 143
Max spectrum of entire element .. 143
Copy Spectrogram into 3D curve-window 143
Power Spectrum ... 143

Display .. 143

Display-Parameters... ... 143
Grid ... 143
Cut-Off Frequency ... 143

Additional Spectrogram Information 144
Show the Spectrogram parameters of this spectrogram 146
Level Display Mode .. 146
Absolute Time Scaling .. 146
Limit measurement decimal places to spectrogram resolution .. 146
Create Color Table ... 146
Hide buttons and numeric display area ... 147
Hide main window .. 147

Tools ... 148

- Playback .. 148
- Playback settings ... 148
- Heterodyned playback mode .. 148
- Enlarge Image .. 148
- Reduce Image ... 148
- Zoom out time axis .. 148
- Scroll > .. 149
- Left, right, begin, end .. 149
- Auto Scroll ... 149
- Image Filter: Average, Median ... 149
- Scan frequency contour and amplitude envelope 149
- Remove erased spectrogram sections from waveform 153
- Cursors> .. 154

How to use the measurement cursors ... 154

- Marker mode ... 154

- Cursor modes ... 155
- Insert bound frequency cursor ... 156
- Insert frequency cursor .. 156
- Insert harmonic frequency cursor .. 156
- Remove Marker ... 156
- Remove Cursors .. 156
- Erase marked section ... 156
- (Move reticule cursor by one pixel) / left, right, up, down 156
- Copy cursor value .. 156
- Copy the marker to the main window .. 156
- Cursor linkage between Instances .. 157
- Display amplitude at reticule cursor cursor cross 157
- Magic reticule cursor ... 158
- Labels > .. 161

Labeling .. 161

- Insert label ... 162
- Insert section label ... 162
- Insert section label from marker .. 162
- Section label grid ... 162
- Label settings .. 162
- Label statistics .. 164
Export label data..165

Automatic parameter measurements >..165

Classification ...184

Classification Settings...185
 add class ..185
 rename ..185
 delete ...185
 Location ..185
 Copy settings ..186
 Reset ..186

Configuring the classification option ...187

Automatic Parameter Measurements Statistics188
 Numeric display ..188
 Minimum, Maximum, Mean, Median, Standard deviation188
 Relative on time (for duration only) ..188
 The relative on time corresponds to the sum of the element
 durations divided by the total duration of the spectrogram (the
 option “Compute parameters from entire spectrogram must be
 activated”) ...188
 Histogram of one parameter ..188
 Update ...189
 Copy parameter measurement values ...189
 Copy parameter measurement values for entire file189
 Copy parameter measurement values in transposed order189
 Copy parameter measurement headings ..189
 Save detected elements into numbered .wav files189
 Remove gaps between detected elements190
 Copy detected elements into section labels190
 Copy peak frequencies into labels ..191
 Calculate Acoustic Complexity Index (ACI).................................191
 Keyboard Shortcuts and Popup Menu ...192

WavFile...192
 Open ...192
 Browse ...192
 Rename ...192
 Rename by text module ...192
 Import Format ..192
 Spectrogram parameters ..192
 Copy : ..192
Save As ... 192
New instance .. 193
Save configuration ... 193

Automatic Parameter Measurements display window 193
 Setup ... 193
 Classification settings .. 193
 Statistics settings .. 193
 Compute parameters from entire spectrogram ... 194
 Export ... 194
 Copy parameter measurement values .. 194
 Copy parameter measurement values for entire file 194
 Copy parameter measurement values in transposed order 194
 Copy parameter measurement headings .. 194
 Copy the time stamp of the selected element ... 194
 Copy class sequence .. 194
 Copy class frequency .. 194
 Save detected elements into numbered .wav files.................................. 195
 Remove gaps between detected elements from sound file..................... 195
 Copy detected elements into section labels ... 195
 DDE Parameters / Log-File ... 195
 View .. 195

Automatic Response .. 195
 Methods of measurement value export .. 199

Spectrogram output ... 200

THE REAL-TIME SPECTRUM DISPLAY .. 201

THE CURVE WINDOW .. 201

File .. 202
 Print .. 202
 Save .. 202
 Copy .. 202
 Export Parameters .. 202
 Data export > .. 204
Save ASCII file ...204
Copy ASCII file ...204
Add x axis increments ..204
Save as .WAV file ..204
Copy WAV file ..204
Save as .fft file ..204
Save as .flf file ...205
Copy cursor values ..205
DDE Parameters / Log File ..205
Start real-time spectrum ..205
Stop real-time spectrum ...205
Real-time spectrum setup ...205
Sound card settings ..205
Display ...206
Zoom ..206
Unzoom ...206
Unzoom with zero ...206
Zoom previous ...206
Display range ..206
Grid ...206
Steps ..207
3D Options ..207
Spectral Characteristics ...208
Pulse Train Analysis ...210
Tools ...211
Insert bound cursor ...211
Insert free horizontal cursor ..211
Remove cursor ...211
Harmonic cursor ..211
Cursor linkage between Instances ..211
Insert label ..211
Insert section label ..211
Label settings ...211
Generate section labels ...211
Keyboard Shortcuts and Popup Menu ..212
Edit ...212
Smooth ..212
Power spectrum ...212
Normalize to maximum.. 212

The Real Time Spectrograph Window .. 213
File... 214
Record .. 214
Automatic Recording ... 215
Automatic Response Setup .. 216
Reset overflow flag .. 216
Freeze display (toggle) ... 216
Trigger ... 216
Threshold ... 216
Frequency domain .. 216
Hold time ... 216
Minimum duration .. 216
File name .. 217
Reset ... 217
Save all events into a single file .. 217
Buffer Size ... 217
Envelope ... 218
Scroll-Mode .. 218
Sound Card Settings .. 218
Export-Parameters .. 218
Keyboard Shortcuts and Popup Menu .. 218

SYNTHESIZER (DIALOG-BASED) ... 219

GRAPHIC SYNTHESIZER ... 223

File... 224
New ... 224
Open.. 224
Save .. 224
Save as... 225
Setup ... 225
Sine generator ... 225
Noise generator .. 226
Pulse train generator .. 227
Play ... 227
Insert .. 227
Insert into clipboard ... 227
Save into WAV file .. 228
Sampling rate settings .. 228
Open last arrangement on start 228

Tools .. 228

Zoom ... 228
Unzoom .. 228
Unzoom with zero .. 228
View .. 228
Grid ... 228
Next element .. 228
Next point .. 228
Previous point ... 229
Previous element .. 229
Delete point .. 229
Delete element ... 229
Lock time-axis ... 229
Lock Y-axis .. 229
Scan harmonics from spectrogram based on fundamental .. 229
Scaling .. 230
Copy contour .. 231

Edit .. 231

Copy ... 231
Paste ... 231
Cut .. 231
Delete ... 231
Append .. 231
Remove marker .. 231
Disable marker ... 232

View ... 232
 Display Spectrogram ... 232
 Display Instantaneous frequency / Zero crossing analysis 232
 Fundamental Frequency, Overall Amplitude, Rel. amplitude, 232
 Example of AM ... 233
 Example of FM ... 233

GUIDELINES FOR MAKING CORRECT SPECTROGRAMS ... 234

Over-modulation ... 234
Aliasing ... 234

THE AVISOFT-CORRELATOR ... 235

How to use the Avisoft-CORRELATOR .. 235
 Select the files to be compared .. 235
 Start the correlation process / Defining the correlation parameters 236
 Exporting the correlation matrix .. 237
 Averaging of aligned spectrograms .. 237

The correlation algorithm .. 239
Discussion of the correlation method .. 239

TUTORIAL .. 241

Measuring sound parameters from the spectrogram manually 243
 Labels .. 246

Measuring sound parameters from the spectrogram automatically 248
 automatic (single threshold) ... 249
 automatic (two thresholds) .. 252
 automatic (three thresholds) .. 254
 interactively (section labels) .. 256
 automatic (whistle tracking) ... 257

Basic Analysis of rat or mouse USV’s .. 259
Introduction

Avisoft-SASLab Pro is a versatile sound-analysis, sound editing and synthesis tool that has been adopted to the special needs of researchers studying animal sound communication.

Hard- & Software Requirements

To run the software, a common Windows PC with at least 256 MB of RAM and about 1 GB of free disk space is required. In order to play back (or perhaps also record) sounds, a sound card or external USB audio interface should be installed.

Installation procedure

To install the software, run the installation program either from the supplied USB flash drive (subfolder SASLab Pro / setup.exe) or the Avisoft Bioacoustics website (www.avisoft.com/downloads.htm or directly www.avisoft.com/SASLab Pro.exe). The supplied USB key must be plugged into an USB port of the computer in order to launch the program.

The USB key requires a dedicated device driver that should be installed automatically. That driver can also be installed separately from Sentinel System Driver Installer.

Free software updates that provide bug fixes and improved functionality are available from www.avisoft.com/downloads.htm.

Program description

Avisoft-SASLab Pro consists of several windows that are dedicated to certain tasks. The main window allows to open and to save .wav files, to edit the waveforms and to launch additional windows for specific tasks. One of the most important analysis windows is the spectrogram window (command Analyze > Create Spectrogram...) that supports detailed spectrogram analysis, measurements, printing and export functions. Other windows are dedicated to special functions, such as power spectra (Analyze > One-dimensional transformation...), pulse train analysis (Analyze > Pulse Train Anaysis...) or synthesis (Edit > Synthesizer).
Getting started

The following topics describe the spectrogram generation procedure.

- **Sound card adjustment**: Selection of sampling frequency (see page 27).
- Adjusting the recording level through the software supplied with the sound card (menu option "File”/”Recording Level Control...").
- **Data acquisition**: Start recording "File/Record" (see page 26), Stop recording with . Alternatively the Real-Time-Spectrograph (Menu "File/Real Time Spectrogram") can be used for pre-trigger data acquisition (see page 213).
- Select the section to be analyzed spectrographically by clicking on the desired start point and dragging to the end point inside the envelope curve display. The current selection can be verified by playing that section through the sound card .
- Adjusting the spectrogram parameter in the menu "Analyze/Spectrogram parameters..." (see page 44).
- *Generate spectrogram* (see page 44).
- Select display-parameter inside the spectrogram window Display/ Display-Parameter... (see page 143).
- In very long spectrograms the visible section can be selected using the horizontal scroll bar at the bottom of the window. Please note, that the window size can be changed by dragging the left and right window margins.
- Adjusting the export-parameters for printing the spectrogram (menu File/Export-Parameters...) (see page 136).
- Print spectrogram directly using the menu "File/Print Spectrogram"
- or:
- Copy the spectrogram into the clipboard (menu File/Copy Spectrogram).
- Insert the spectrogram into a word processor or graphic editor application. There you can input a documentation text before printing.
The main window

The main window supplies all functions necessary for recording, playing, editing and displaying of time data (audible sound signals). The spectrogram generation is parameterized and started here.

File

Open

The File/Open dialog allows to load previously saved sound files. It is also possible to open sound files in other formats than WAV:

- Avisoft-DOS (*.DAT) File format of the old DOS-based Avisoft-SONAGRAPH.
- NeXT/SUN (*.AU; *.SND) Standard sound file format on UNIX workstations.
- User-defined (*.*) Other sound file formats which have been previously defined in the menu "File/Import-Format...".

Alternatively sound files can be loaded by Drag&Drop technique. You have first to start the Windows file manager. Then click at the desired file and drag the mouse cursor to the Avisoft-SASLab window while the left mouse bottom is pressed. Releasing the mouse bottom above Avisoft-SASLab will load this file.

Browse...

This modeless dialog box allows quick navigation through sound files. All files located in the specified Folder will be listed including date and titles read from the
.wav file chunks. The “…” button may be used to choose a file from a different folder. A file can be opened by selecting the file from the list and clicking at the Open button. Double-clicking at the desired file will both open that file and close the dialog box. If the option auto open is activated, the selected files will be opened automatically. The < and > buttons will open the previous or next file in the list. The Play button will play back the selected file. In large file numbers (more than 200), the Update button must be pressed to display the created/modified dates and titles from the .WAV file chunks. Alternatively, one of the currently visible files in the list can be selected to show these details. The creation date is displayed only for files created by Avisoft-RECOROE version 2.4b or higher. For all other files, the date of the last modification (file date) will be shown.

If the option compress is activated, the silent sections within the sound files will be removed (see Remove silent sections, page 80). The button compress settings… launches a dialog box that allows to set-up the parameters for the compression.

File Open Settings…

This dialog box provides a few settings that influence how (fast) sound files will be opened and displayed in the main window of Avisoft-SASLab Pro. These options will certainly determine the efficiency when opening large sound files.

temp directory This edit box defines the directory used for saving temporary files. By default (when this edit field is empty), the temporary files will be saved in the directory <username>/Documents/Avisoft Bioacoustics/Configurations/SASLab.

Processing of large sound files can be significantly accelerated by using a RAM disk for the temporary files (then enter the drive name of the RAM disk here). Note that the size of RAM disk must be large enough to hold all temporary files. As a rule of thumb, the size should be at least twice the size of the original sound file. When using a RAM disk, it is also recommended to disable the following option do not create a temporary copy (SASLab Pro would then automatically copy each soundfile into the RAM disk).

do not create a temporary copy (limited undo !)
If activated, all editing actions will apply directly to the original sound file. This will accelerate opening large sound files (because there is no additional copy process required). So, use this option for viewing large sound files. Opening sound files that are subject to editing might be risky because all actions will immediately be applied to the original file (and not only after executing File/Save).
do not allow any editing
This option disables all editing commands. Activate this option if you want to prevent any modification to a sound file. This option is automatically activated when checking the above option ‘do not create a temporary copy...’.)

limit the initial view to the first xxx seconds
When opening very large sound files, the computer might require a significant amount of time for displaying the waveform of the entire file. This option allows to limit that delay by displaying only the first subsection of the entire file.

convert from stereo to mono
If activated, this option will automatically convert a stereo files to mono. Use the Settings… button to select the desired settings.

sampling frequency conversion
This option will automatically resample the sound file. Use the Settings… button to select the desired sample rate.

remove silent sections (breaks)
This option will automatically remove the silent breaks within the sound file to be opened. The silent sections are identified by an amplitude threshold comparison. Use the Settings… button to set-up the threshold and other parameters. Note that this option cannot be combined with the option re-assemble consecutive files.

change volume
This option executes the command “Edit”/”Change volume...” Use the Settings… button to select the desired action.

Main window envelope display options

normalize envelope display See page 51.

fast envelope display mode (amplitude samples only)
If activated, the envelope display will be based on a limited number of samples only. So, activating this option will speed-up displaying large sound files. However, this kind of under-sampling may lead to incorrect displays. If a complete and correct envelope display is required (for no missing sound events), this option should not be activated.

fast spectrogram display mode
If activated, the overview spectrogram display will be based on a limited number of samples only, which will speed-up displaying large sound files. Sound events occurring between those samples will then be ignored and not displayed.
Optimize waveform and spectral envelope overviews
This option will keep the waveform and spectrographic envelopes in the RAM in order to accelerate the main window overview displays on large files.

save envelopes to disk (*.env): If activated, the internally calculated envelopes will be saved to disk (with the same filename as the underlying .wav file, but with the extension .env), which will accelerate the subsequent file open procedures on large files. The .env files can also be created in advance by using the batch command *Create envelope (.env) sidecar file.*

envelope resolution (FFT frames): The settings from 8 to 1024 determine the resolution of the internally stored envelope data set. Small values will create a larger and more detailed data set, while larger values will reduce its size and may therefore lead to a longer delay when the overview display shows a medium zoom stage.

Numbered event files created by Avisoft-RECORDER
These options do only apply to sound files recorded with Avisoft-RECORDER.

add neighbour channels See page 36.

display voice notes
This option will display any voice note .wav files that might accompany the primary sound file. Left-clicking at the red rectangular labels will play them back. The voice note files are common .wav files whose file names consist of the name of the primary .wav file plus the special extension “_notexxx” that identifies them as voice note files.

re-assemble consecutive files
Use the **Settings** button to set-up this option. See page 33. Note that this option cannot be combined with the option *remove silent sections (breaks).*

The **Fast!** button sets all options in such a way that the File Open command is executed as fast as possible.

Close
The currently loaded sound file is closed.

Save
Saves the currently opened sound file under the current name.
Save As...

Saves the currently loaded sound file under a new file name. If there is a marked section then you have to decide whether only the marked section or the whole file should be saved. Besides the standard *.WAV format you can save files in *.AU, *.SND, *.AIF or ASCII format.

Rename

This command allows to rename the currently opened sound file. There a number of options that can accelerate processing large quantities of numbered files:

Keep original name string: If activated, this option will keep the original name string and insert the newly entered string as a prefix only. This mode of operation is recommended for processing numbered sound files that were recorded with the Avisoft-RECORDER software or other third-party recording equipment. The related option **Remove existing prefix** will remove any prefixes that might already exist and replace them by the new one rather than leaving the old ones.

prefix | suffix: If the option **Keep original name string** is activated, this list box allows to define whether the new name string is added as a prefix or suffix.

Hide this dialog box: If the rename command is launched through the menu **Rename by text module**, this option will reject this dialog box in order to reduce the number of keystrokes or mouse clicks.

Automatically proceed to the next numbered file: If activated, the software will automatically open the next numbered file once the rename command has been completed.

Create LOG file entry: This option will create a LOG file entry or send the log information to Excel. Use the **LOG file/DDE settings** button to define the log file name and format and the optional DDE export.

A preview of the new filename is displayed at the bottom of the dialog box. The rename command will also rename any related .kml or .gpx files (having the same file name).

Rename by text module / Define text module >

The Rename dialog box can alternatively be launched from the related menu **Rename by text module / Define text module**, which will paste pre-defined text modules (such a species names for instance). The associated keyboard shortcuts (by default F1...F12) can further accelerate the renaming procedure. The text modules can be defined by selecting one of the 12 sub menu items, entering the desired text string and then clicking at the Define as text module! button. The Option “**Rename by text module / Define text module”/”Hide dialog box”** must be deactivated in order to access this dialog box. The defined text
modules are also available through the Text modules menu or the combo-box of the Rename dialog box.

The option **Show text modules on touch panel** will additionally show the defined text modules on a separate, resizable touch panel window suited for using the rename functionality on touch screens.

In case the number of the text modules should be larger than 12, it is possible to add additional ones from the sub menu **File / Rename by text module / Define text module / External text file**. The command **Select external file…** allows to select an external text file that contains the desired additional text modules. The individual text modules in this file should be separated by CR/LF (<new line>) control characters. If the option **Use external file : xxxx** is activated, these strings will be appended to the Text modules menus of the File/Rename and the Insert Label commands.

If the option **Paste text module into the first dXML field (instead of renaming)** is activated and the dXML dialog box is launched, the text modules will be pasted into the first dXML field and rename functionality is bypassed.

Record

The Record command transfers sounds into the computer. A sound card or an equivalent sound interface with MME driver must have been installed.

Use the command "**File/Sound Card Settings...**" to select the sampling frequency, the number of used bits for digitizing and the maximum recording time. The sampling frequency should be accommodated to the signals to be recorded. The recording process is started by the command "**File/Record**" or by pressing the record button . A real-time spectrogram display window will appear, while the recording process is running. Recording can be canceled before the regular end (defined in **Sound Card Settings**) by pressing the stop button . Then, the entire file will be displayed in the main window as a waveform display. The color of the envelope turns to red if the sound card was over-modulated. In this case you should reduce the recording level and repeat the recording process to prevent distortion of the recorded signals.

Real Time Spectrogram

This menu option activates the Real Time Spectrograph window. (see page 213)
Sound card settings

This menu option allows adjusting the sound card settings. The sampling frequency, the number of bits and the maximum recording time can be selected. If the option “Duration of Recording” is activated, each recording will be stopped after the specified duration has elapsed. Otherwise the recording process must be stopped manually (it will also stop after 2GB of recorded data).

The sampling frequency should be accommodated to the signals to be analyzed. The sampling frequency should be at least twice the maximum frequency in the signal to be recorded. All signals above the Nyquist frequency will be removed, if there is an anti-aliasing filter on the sound card. If there is no anti-aliasing filter the signals above Nyquist frequency will cause distortion in the digitized signal and wrong spectrograms. Today all soundcards have an onboard anti-aliasing filter due to the type of analog-to-digital converter (sigma-delta).

Note, that the sampling frequency influences also the frequency resolution that can be obtained in spectrograms. Frequency resolution increases with decreased sampling frequency.

If the option ”Perform Sampling Frequency conversion” is activated, the original sound file produced by the soundcard at the sampling frequency selected above is re-sampled after recording has finished using the parameters set in the menu ”Edit”/”Sampling Frequency Conversion...”. That option allows to quickly generating sound files with sampling rates, not supported by the soundcard itself.

When the Sound-card settings dialog box is launched from the real-time spectrogram, an additional combo-box, titled Down-sampling is displayed. This option allows further decreasing the sampling rates supplied by the soundcard. That may be useful for the analysis of low frequency signals.

The edit field Overload if sample>= determines, which sample amplitude will activate the overload detecting mechanism.

The option record from the RECORDER software ring buffer allows to record from devices that are not supported by SASLab Pro, such as the Avisoft UltraSoundGate or National Instruments DAQ cards. To enable that mode of operation, the corresponding RECORDER software ring buffer file must be selected either by the ring.wav button or by drag and drop into the Sound Card Settings dialog box. On the RECORDER software, the ring buffer must have
been setup from the command **Monitoring/Ring buffer**… and the monitoring must be running.

Playback

The menu "File/Playback" and the button allow playing back the marked section through the sound card. If there is no marked section, the whole visible data are played. Playback can be stopped by pressing the stop button .

Playback settings…

This dialog box provides a few options for playing waveforms through the computer soundcard.

other rate:

If this option is checked, the sound file will be played at the selected alternative sample rate. This would either slow-down or speed-up the playback. Selecting a lower sample rate can make originally inaudible ultrasounds audible.

scroll:

If this option is checked, the playback will continue to the end of the file and will not stop at the end of the currently visible section.

loop:

If activated, the sound will be played in a loop until the stop button is clicked.

undersampl:

If this option is checked, the soundfile will be undersampled at the selected ratio. This option can be used to make originally inaudible ultrasounds audible, while the playback speed is not changed.

Default!

The **Default** button sets all playback settings to their defaults.

device:

Select here the desired audio playback device if you have more than one playback devices installed on your computer. The first option “default audio playback device” lets Windows chose the specific device.

multichannel mode:

If the currently opened soundfile has more than one channel, this list box allows selecting which channels should be played. The following options are available:
N of N: All channels will be played separately. This is the normal playback mode, which will play a stereo file in stereo. Note that this might not be possible if there are more than two channels.

1 of N: Only one of the available channels will be played. The desired channel number can be selected from the list box at the bottom of the dialog box. This mode of operation corresponds to the individual playback buttons at the right margin of the waveform displays of the SASLab Pro main window.

2 of N: Only two of the available channels will be played as a stereo stream. The two desired channel numbers can be selected from the list boxes at the bottom of the dialog box.

SUM: The sum of all available channels will be played through a single mono stream.

SUM mix: Same as above except that the weight of each channel can be adjusted on mixer-style control bars.

Heterodyned playback mode...

The Heterodyned Playback dialog box allows to playback (full spectrum) ultrasound recordings that have been sampled at high sample rates just like on a heterodyne bat detector in order to make the ultrasounds audible to the human ear. Once the option enable heterodyned playback has been activated, all subsequent playbacks will be performed with the heterodyne settings selected in this dialog box.

gain: Because the limited bandwidth of the heterodyne method often reduces the playback sound level, it is possible here to boost soft sounds by increasing the gain setting.

bandwidth: Select here the bandwidth of the heterodyne bandpass filter. A common setting would be ±3 or 4 kHz.

center frequency: Adjusts the desired center frequency (tuning frequency) of the heterodyne engine. The frequency can alternatively be tuned by the horizontal slider at the bottom of the window or (when the cursor option has been activated) by the frequency cursors of both the main and spectrogram window.

Advanced playback options >

Play through RECORDER USGH / UltraSoundGate Player

If activated, this option will play the soundfile (in parallel to the selected Windows audio playback device on the command File/Playback settings...) also through the Avisoft-RECORDER (USGH) software, which allows to play sound files through
Avisoft UltraSoundGate Player or National Instruments DAQ devices. In order to get this work, the playback device must have been selected and configured from the RECORDER software command Play/Device… The playback through the RECORDER software will then be controlled via its DDE command interface, which means that the RECORDER software must have been launched (RECORDER USGH will be launched automatically in case the RECORDER software does not respond to the initial DDE command).

Route UltraSoundGate DIO track (LTC) to the right playback channel

If activated, an UltraSoundGate DIO track containing linear time code (LTC) will be routed to the right channel of the playback device, which will enable synchronization with suited video playback equipment.

On multichannel .wav files, the channel containing the time code must be selected from the command Analyze/Time axis format… (activate the option “absolute clock time” and select “SMPTE time code on USG DI (LSB)”). In addition to that, one of the following “multichannel mode” (mono output) options must be selected from the command File/Playback settings…: “1 of N”, “SUM” or “SUM mix” (“N of N” and “2 of N” will not function because these options already use both output channels).

Configuration >

These menu options support fast switching between different parameter settings. The different settings are saved in separate configuration files (*.ini). The name of the current configuration file is displayed at the caption of the main window. By default, the configuration files (*.ini) reside in the folder `<user>/Documents/Avisoft Bioacoustics/Configurations/SASLab`.

Open...

Loads a previously saved configuration.

Save

Saves the current configuration.

Save As...

Saves the current configuration under a new file name (*.ini).

Reset

Resets the configuration to the default settings.
Save mode on exit >

Save current configuration automatically
When this option is checked, the current configuration will be saved automatically each time the software is closed down.

Prompt
When this option is checked, the current configuration can optionally be saved each time the software is closed down.

Open mode on start >

Open last configuration automatically
When this option is checked, the last configuration used will be opened automatically each time Avisoft-SASLab is started.

Launch Open dialog
A file open dialog asking for the configuration to be used will be displayed each time Avisoft-SASLab is started.

There are three command line parameters for SASLAB32.EXE that override the configuration file modes described above. Note, that the keywords must be written in uppercase letters.

/INI=
The configuration file name (*.INI) specified behind this keyword will be used instead of that specified by the ‘Open mode on start’ settings.
Example:
C:\SASLAB\SASLAB32.EXE /INI=narrow.ini

/CFG=
The save and open modes for configuration files are saved in an additional higher order configuration file. The standard file AVISOFT.CFG can be overridden by this command line parameter. This allows you to prepare different open and save modes.
Example:
C:\SASLAB\SASLAB32.EXE /CFG=AVISOFT2.CFG

Another possible command line parameter is the file name of a sound file, which should be opened on program start. There is no special keyword required for this mode.
Example: C:\SASLAB\SASLAB32.EXE demo.wav
DDE Command Interface

The SASLab software accepts the following DDE commands (XTYP_EXECUTE):

- **openfile** *filename*: opens the specified .wav file (command File/Open…)
- **close**: executes the command File/Close
- **next**: executes the command File/Specials/Next file
- **prev**: executes the command File/Specials/Previous file
- **exit**: executes the command File/Exit
- **config** *filename*: loads an ini. configuration file (command File/Configuration/Open…)
- **batchprocess** *pathname*: executes the command Tools/Batch processing…

The completion of the batch process is indicated by creating a file named “finished.txt” in the specified path.

The application name is “SASLAB” and the topic name is always “main”.

Here is a sample using the CMCDDE command line application (http://www.istry.fr/spip/zip/CMCDDE.zip):

```
CMCDDE.EXE SASLAB main "openfile C:\soundfile.wav"
```

Sample batch files employing the above CMCDDE command line program can be found on the software installation media (folder Thirdparty/DDE/SASLab) or online at http://www.avisoft.com/DDE/SASLab/SASLab_DDE.zip

The software also accepts similar XYP_POKE DDE transfers. The available items are as follows:

<table>
<thead>
<tr>
<th>Item</th>
<th>Data</th>
<th>Corresponding command</th>
</tr>
</thead>
<tbody>
<tr>
<td>openfile</td>
<td><filename></td>
<td>File/Open…</td>
</tr>
</tbody>
</table>

Specials >

This sub menu contains special purpose commands for advanced actions.

Previous file

Opens the previous file according to the selection on the command Previous/Next file command settings…

Next file

Opens the next file according to the selection on the command Previous/Next file command settings…
Previous/Next file command settings...

Use this command to select the desired file order on the commands Previous/Next file. The available options are:

- **filename number**: The consecutive number in the filenames will be used.
- **creation date**: The file system creation date will be used.
- **modification date**: The file system modification date will be used.
- **alphabetic order**: The alphabetic order of the filename will be used.

The option **on the previous file command move to end of file** will display the most recent part of the file after executing the previous file command.

The option **keep the current zoom interval** will keep the temporal resolution of the current waveform and spectrogram display (showing only a subsection of the entire file). Otherwise, the previous / next file will be displayed completely and the previous zoom interval will be ignored. The **smooth file browsing while scrolling** option will automatically invoke the previous or next file command once either the start or end of the file has been reached during a scrolling action.

Auto Browse

This tool executes the command File/Specials/Next file at the specified **interval**. Click at the **Start** button to start the slide show and click at **Stop** to stop it. The **create spectrogram** option corresponds to the command **Actions/On new soundfile/Create Spectrogram**, which will automatically create a spectrogram of each file. The **auto scroll** option will additionally launch the spectrogram window command Auto Scroll (Tools/Scroll/auto scroll), which allows to move through the entire spectrogram.

Delete File

Deletes the currently loaded numbered file and re-names the following files. This command is only available for numbered sound files (Txxxxx.WAV).

Re-assembling settings...

This dialog box allows re-assembling the numbered event files generated by Avisoft-RECORDER (version 2.4 or later). The event files contain sample-precise time-stamps that will be used to re-construct the original temporal structure of successive events. All events that are closer than the specified time parameter will be packed into one single continuous file. This allows precise measurements of inter-event -intervals. The option **inflate breaks** will insert the corresponding number of samples between the single event files. If this option is not activated, the breaks between the event files will be marked by short vertical red ticks on the top of the waveform display (or the spectrogram in the spectrogram window). In that
case, the measurement cursors take the missing breaks into account and provide temporal measurements that correspond to the original time structure. If there are larger breaks between the event files (that would produce large amounts of data), it is strongly recommended to disable the option inflate breaks. The command Edit/Compress/’Expanded view (restored time structure)’ would still allow to insert the removed breaks (silence) into the waveform.

Import-Format

Besides the standard WAVE-format any ASCII- or binary sound file can be read. Because the information about the format of foreign sound files cannot be taken from the file-header, it is necessary to define this manually. This is done in the menu "Import Format".

Format

Format of the samples:
- Binary : Twos complement
- Binary : Offset format
- ASCII
- Binary : Float 32 bit

Arrangement of bytes in 16 bit data:
- Intel : 1st Byte is Low-Byte, 2nd Byte is High-Byte (standard on IBM-PC)
- Motorola : 1st Byte is High-Byte, 2nd Byte is Low-Byte (standard on Apple Macintosh)

Range

Measurement range of the ASCII file. This value is used to transform the ASCII data into binary format. This value should represent the maximum of the samples in the ASCII file in order to maintain a good resolution of the WAVE-file.

auto range

This option will determine the range automatically based on the maximum of the samples in the file.

Number of Bits

The number of bits of the samples in the sound file is expected.

Mode

- Mono : The sound file to be read is mono.
- Stereo : The sound file to be read is stereo. Both channels are entered.
- 1 of N : The sound file to be read consists of several channels. Only one channel is entered.
Number of channels [n]
The number of channels present in the sound file is expected. (only valid on "1 of N")

Channel [1..n]
The index of the channel to be entered is expected. (only valid on "1 of N")

Header-Length [Bytes]
Sound files usually start with a header, which contains information about the saved data. In order to skip this header its length has to be specified here. If a "Start-String" (see below) has been defined, this value is interpreted as an offset related to the position of the start-string.

Start-String
In some file formats, the beginning of the data section is marked by a special keyword, if the header-length is variable. By specifying the keyword the position of this word is searched in the file. The value of the "Header-Length" is added to this position. If the data is followed the keyword immediately, the "header-Length has to be set to zero.

Sampling frequency
The sampling frequency of the sound file to be read is expected (Unit [Hz]).

After the sound file format has been defined, the file can be loaded in the menu "Open...". There the file format "User-defined Import Format (*.*)" has to be selected.

File properties
Shows file properties and statistics of the currently loaded file.

Add channel(s) from file
Adds one or more channels from a *.WAV file to the currently opened file. The duration of the resulting multi-channel file will be set to the minimum duration of both files. So, the longer one will be cut to the size of the shorter one. Please note, that *.WAV files with more than two channels are unusual and playback of such files is not possible. Other sound-processing applications may have problems to read these files. This option was implemented in order to enable time of arrival measurements between more than two channels.

In case the two .wav files contain SMPTE or LANC time on one of the UltraSoundGate DI tracks, it is possible to align the two files based on this time
code information. In order to get this work, the "absolute clock time” option and the “SMPTE” or "LANC time code on USG DI (LSB)” list box entry on the command "Analyze/Time axis format" must be selected. The time code information must be located on the same channel number in both files.

The **Add channel(s) from file** command can be alternatively invoked by drag&drop while the Ctrl key is being pressed.

Add silent channel
Adds a new silent channel. Use command File/Specials/Swap channels to move the newly added channel.

Remove channels
Removes one or more channels from a multichannel file. The channels that you want to keep in the new file must be checked.

Add neighbour channels automatically
If this option is checked, other neighbor channels generated by the Avisoft-RECORDER software will be added automatically each time one of these files is opened. This option is intended for analyzing multichannel (in sync) recordings consisting of several mono files with identical filenames located in neighbored directories.

Swap channels
Swaps left and right channel in stereo files.

Insert .wav file
Inserts a .wav file at the current inserting point.

Append .wav file
Appends a .wav file to the end of the file.

Join .wav files
This command will join several .wav files into a single file. The launched File Open dialog box allows to select multiple files by pressing the shift key. The order of the source files in the resulting file will be determined by the order at which the files have been selected (the current order is shown in reversed order in the File Name edit box). The resulting soundfile will contain labels that indicate the starting points of the original source files. The resulting sound file (that is temporarily named “joined.wav”) must be saved from the File/Save As… command.
Join .wav files from a playlist
This command will join several .wav files that are listed in a playlist file (.TXT files created by Avisoft-RECORDER or common M3U files) into a single .wav file. The launched File Open dialog box allows to select a playlist (.txt or .m3u). The resulting soundfile will contain labels that indicate the starting points of the original source files. The resulting sound file (that is temporarily named “joined.wav”) must be saved from the File/Save As… command.

UltraSoundGate DIO
The UltraSoundGate DIO commands support editing the least significant bit of the 16 bit audio samples. This low-active bit is available at the digital TTL output jack on the Avisoft-UltraSoundGate Player. That control channel can be used for control applications, that require switching external devices synchronous to the sound output.

- **Reset**: Resets the DIO bit on the currently marked section.
- **Set**: Sets the DIO bit on the currently marked section
- **Set from section labels**: Sets the DIO bit for all section labels.
- **Invert**: Inverts the DIO bit on the currently marked section.

If no section is marked, the commands will apply to the entire file.

Insert time code / pulse train / single pulse...
This command allows synthesizing more complex pulse trains for synchronization purposes. The available options are as follows:

- **mode**:
 - **SMPTE Linear Time Code**: Linear time code compatible with the corresponding industry standard.
 - **LANC (RS232) Time Code**: Time code encoded as RS232 9600 boud serial protocol according to the SONY LANC (Control P) interface protocol.
 - **Pulse Train**: Simple pulse train with a specific interval and duty cycle.
 - **Single Start Pulse**: A single pulse of the specified duration will be inserted at the start of the file.

The **channel** listbox selects the channel into which the signal should be synthesized. The **frames/s** listbox selects the desired frame rate. The **start time** field defines the desired start time expressed in hh:mm:ss:ff. If the option **relative to marker** is activated, the start time will be assigned to the start of the current marker cursor. The **user bits** field allows to define user data that will be embedded into the time code. The **ASCII** option will interpret the entered string as
8 bit ASCII characters. Otherwise, it is interpreted as a 32 bit integer number (hexadecimal coding can be specified by the 0x suffix).

Display DIO state: If this option is activated, the DIO state will be displayed at the bottom of the waveform display.

Shred into numbered files...
This command copies the currently loaded file into a set of smaller numbered files. By default, the file name of the first file is T0000001.WAV. These files will be copied into the specified *Destination directory*. If operated in a batch mode (*Tools > Batch processing...*), the destination directory cannot be selected by the user (the new files will always be saved in the source file folder).

The input field *file duration* specifies the duration in seconds of each file (the last file may be shorter). The field *file overlap* determines, how many seconds consecutive files will overlap. The original file remains unaffected.

The option *keep the original filename* will include the name of the original source file name into the file names of the new files. If operated in a batch process, the new files will be saved into the same folder as the source file. If the *keep the original filename* option is not activated, the new files will be stored in a new subfolder whose name is identical to the name of the individual source file.

The option *add time offset to filename rather than file number* will replace the file number by the time offset relative to the original file. The time offset is formatted as follows: _hhmmss_.

Envelope

Save Envelope Curve
Saves the envelope curve visible in the main window according to the current export parameters as a BMP-file.

Copy Envelope Curve
Copies the envelope curve visible in the main window into the clipboard.

Envelope Curve Export Parameters
Here you can determine the appearance of envelope curves (waveforms) to be exported. The following characteristics can be influenced:

Frame: The envelope curve is displayed inside a frame supplied with time axis labels.
Time Axis relative: If the frame is activated it can be determined if the time axis should be related to the beginning of the display.

Time Scale: If no frame is activated you can enable a time scale below the envelope curve.

![Time Scale Diagram](image)

High Resolution: The envelope curve is exported with higher resolution compared to the screen display.

Launch separate Curve Window
This command launches a separate curve window for more detailed measurements and advanced export facilities.

Real Time Spectrum
This menu option activates the Real Time Spectrum window. (see page 201)

Don’t work on copies of opened .wav files
If this option is activated, all editing operations will be made on the original file (not on a copy of it). This will accelerate opening large files. However, because editing is applied to the original file, care must be taken not to cause unwanted modifications to the sound file. With this option activated, the command File/Save is not required. For files other than .wav, this option has no effect.
Georeference .wav files

This command allows to link .wav sound files (that have been recorded in the field by using a solid-state or hard disk recorder) to the geographic coordinates acquired by a GPS receiver. This is done by comparing the time-stamp information stored in the sound files with the tracklog or waypoint data collected by the GPS receiver. The tracklog and waypoint data must be provided in the universal GPS exchange format (.gpx) or the NMEA format (.txt). Most handheld GPS receivers (for instance Garmin, Magellan or Holux GPS data logger) provide software tools for exporting their track data into such .gpx files. The results of the geo-location procedure are saved as waypoints or tracks into a .gpx or .kml file, which can be displayed for instance on Google Earth. The names of the waypoints and tracks refer the corresponding sound files. This enables a quick overview on the locations at which the individual sound files have been recorded.

For a successful georeferencing procedure it is necessary that the internal clock of the recorder is set precisely to the GPS time and that the GPS receiver is set to the automatic tracklog mode. Alternatively, waypoints could be saved manually at each location at the time of recording.

Input

.wav file directory:
Enter or select (through the … button) here the directory that contains the recorded .wav files. The directory can alternatively be selected by dragging one of its files into the dialog box.

.wav file time stamp options

use the date created / date modified as time stamp if there is no BWF (bext chunk) OriginationDate

This option allows to select the time stamp source that should be used for the analysis if there if there is no time stamp in the file BWF .wav file header. If the selected .wav files still reside on the original digital media (the CF or SD card of the recorder), then you might use both options. However, if the files have been moved to another media (computer harddisk), the date created usually represents the date at which the files were copied. So, you have to use the **date modified** option in this case. The software will automatically take the file duration into account, so that the file start time can still be estimated properly.

recorder time zone:
Enter here the local time zone offset (+ daylight saving time offset) of the recorder clock in order to match the recorder time to the GPS UTC time. In case the file
system of the recorder already takes the time zone offset into account, select the zero offset option “GMT”.

Time stamp correction:
In case the recorder time has not been set properly or if the local time of the recorder does not match the GPS time, it can be corrected here. The entered hours, minutes and seconds are added to the .wav file time stamp before they are compared with the GPS log. It is therefore allowed to enter negative values.

Time stamp tolerance:
The time stamp tolerance defines the maximum time interval that is accepted between the sound file time stamp and the nearest tracklog entry. Files with time stamps that do not meet this criterion will be ignored.

use the custom Avisoft Bioacoustics .wav file GPS chunk
If activated, the GPS coordinates will be read from the custom GPS chunk in the .wav file header. Use this option for .wav files that have been recorded with Avisoft-RECORDER software.

GPS Waypoint / Tracklog File (.gpx, .kml, .tcx or NMEA .txt)
Select here the tracklog file from which the time stamps and GPS coordinates should be taken. Supported file formats are the GPS exchange format (.gpx), Google Earth (.kml with MultiTrack entries), Gamin Trainings Center (.tcx) and NMEA 0183 formatted text log files (.txt). The NMEA option currently supports only the $GPRMC sentence. The tracklog file can alternatively be selected by dragging it into this dialog box.

Output

GPS Waypoint / Track File
Enter here the destination .gpx or .kml file name into which the geo-referencing results should be written. The desired file format (.gpx or .kml) can also be selected from the corresponding list box.

create individual log files for each .wav file
If this option is activated, an individual log file will be created for each .wav file. Except of the file type extension, the file and path names of the log files will be the same as the corresponding .wav files.

create track if distance > xxx m
If the position changes while recording a sound file by more than this limit, a track representing the path of the moving recorder will be added to the .gpx file.
add additional waypoints at xxxx sec intervals
This option will create additional waypoints along the above track in order to simplify the orientation within the .wav file.

Add additional HTML links to the .wav files
This option (only available with .kml output files) will add direct HREF links pointing to the .wav files. The original pathname of these links can be replaced by a user-defined path (or an URL pointing to a website).

write GPS stamp into .wav file header (GPS chunk and bext Desc)
This option will save the determined GPS coordinates (and GPS time) also into the header of each .wav file. The information is saved both into the application-specific ‘GPS ‘ chunk (that can only be read by the Avisoft-SASLab Pro software) and the Description field of the BWAV bext chunk. If there is already a description, the GPS information will be appended. If the .wav file does not already include a bext chunk, then it will be appended to the end of the file.

launch GIS application
If activated, the program will run the specified GIS (Geographic Information System) application with the resulting .gpx/.kml file as a command line argument. One possible program would be GoogleEarth, which can (in the current version 5.1) however only open .kml files as a command line argument. .gpx files must be instead opened separately.

Default!
This button sets all parameters to their defaults.

If the program cannot find any tracklog entry that matches the calculated UTC time stamp of a particular .wav file, then a log file is launched that lists the UTC .wav file time stamp (calculated from the original .wav file time stamp, the selected recorder time zone and the time stamp correction) and the type of time stamp used (‘crea’ = date created taken from the file system, ‘modi’ = date modified taken from the file system, ‘bext’ = origination date taken from the BWF (bext) file header). This information can help to properly adjust the time zone and time stamp correction settings.

Edit title
Launches an edit box for inputting a title for the sound file. This title will be saved into the .wav file header and may be displayed on the spectrogram images.

New Instance
A new instance of Avisoft-SASLab Pro is launched. Multiple instances of the program can be used to process several sound files simultaneously.
Marking time sections

A subsection of the loaded sound file can be marked by clicking at the desired start point and dragging the cursor to the end point. Once a section has marked, this marker can be resized by dragging the margins of the section. The whole marker can be shifted by clicking inside the marked section and dragging it away. Removing of the marker can be done by the menu ”Tools”/”Remove Marker”. The parameters of the marker (t1: begin, t2: end, dt: duration) are displayed in the unit seconds on the right of the window.
Analyze

Create spectrogram

The optional spectrogram overview display in the main window is only intended for better navigation through the sound file. For this reason there is an extra window for spectrogram display. Inside this spectrogram window spectrograms can be exported to other applications or spectrogram structures can be measured by different cursors.

After marking the desired section for spectrogram display you can start spectrogram computation by the menu "Analyze/Create Spectrogram". If no section is marked, a spectrogram of the entire sound file is generated. Note that this procedure may take a very long time, depending on the file size and the parameters selected. The parameters for spectrogram generation can be defined in the menu "Analyze/Spectrogram-Parameter".

Spectrogram-Parameters

The spectrogram parameters determine the resolution in time and frequency axis. The frequency resolution (corresponding to the filter bandwidth of analogue spectrographs) is determined by the sampling frequency, the FFT length, the frame size and the window type. The bandwidth of a spectrogram should be adapted to the signals to be analyzed. The inverse of the bandwidth determines the temporal sensitivity of the spectrogram.

The following parameters can be influenced:

Frequency Resolution

FFT Length

One half of the selected value corresponds to the spectrogram height. High values result in high frequency resolution and low time resolution. For normal applications an FFT length of 256 points should be used. The usage of 1024 points is only useful if a high-resolution display driver (1024*768) is installed.
Frame size
The frame size determines the percentage of the FFT length that is actually used for the spectrum computation (zero-padding). Low values will result in a higher time resolution. This is accompanied by lower frequency resolution. A frame size of 100% is recommended for normal applications.

Window
The evaluation window determines the suppression of the unwanted spectrum distortion (so called “side lobes” that are associated with the analysis of stationary signals) and the analysis bandwidth. The available window types are Rectangle, Hamming, Hann, Blackman, Bartlett (triangle), FlatTop, KaiserBessel and Gauss. The FlatTop or Hamming windows provide the best results in most cases. The FlatTop window provides a “flat top” band-pass filter characteristic that is ideal for taking precise magnitude measurements.
Bandwidth
The bandwidth depends on all three parameters (FFT length, Frame size, Window) and the sampling frequency of the sound file. In contrast to the resolution, the bandwidth is the true physical filter bandwidth, which is usually larger than the resolution.

Resolution
The frequency resolution depends on the FFT length and the sampling frequency of the sound file. In contrast to the bandwidth, the frequency resolution corresponds to the height of one pixel of the spectrogram (frequency bin width = sample rate / FFT length).
LPC
The LPC option activates an additional Linear Prediction Coding procedure that is applied to the waveform before calculating the spectrogram. The LPC analysis option creates a smooth spectral envelope that indicates the major energy peaks. In primate vocalization analysis, it can help to track the formant characteristic. The number of the prediction coefficients determines the accuracy of the resulting smooth spectral envelope. The implemented LPC algorithm is based on the least-square estimation technique by using autocorrelation.

peak-to-peak amplitude
This option determines the broad-band peak-to-peak amplitude within the FFT frame and outputs this amplitude at the frequency bin that corresponds to the peak frequency of the FFT spectrum. All other frequency bind of the spectrum will be set to zero. Use this option to measure the amplitudes of very short pulses that would otherwise be averaged out (rejected) by the FFT.

Temporal Resolution

Overlap
The spectrogram is generated by repeatedly computing of spectra of a sliding window through the time data. The overlap is the step width between two neighbor spectra. Rising overlap values result in higher time resolutions. An overlap of 50% is recommended for most applications. Note that high values for overlap do not increase the visible information in the spectrogram if the frame size is not reduced in an equivalent way. The relation between frame size and overlap is displayed graphically on the top of the window.
1/Bandwidth
This is the reciprocal of the bandwidth or time constant.

Resolution
The temporal resolution is the width of a pixel of the spectrogram. The true physical time constant may be different (depending on the selected parameters) from this resolution.

fix
When this option is activated and the FFT length parameter is modified, the Overlap parameter will be altered automatically in order to keep the temporal resolution fixed.

peak freq. interpol.
The peak frequency detection in the spectrogram window is based on a maximum search on the spectra. In order to increase the precision of the peak frequencies beyond the spectrogram resolution, an interpolation algorithm is used. This parameter determines the number of points used for interpolation. The option none will inhibit the interpolation, which means, that the peak frequency resolution is equal to the spectrogram resolution. The option auto will select the optimal number of interpolation points for a given bandwidth.

take channel #
In multi-channel files, this option determines, from which channel the spectrogram will be generated. In stereo files the left channel is channel # 1.

Post-processing
The following optional post-processing procedures are applied to the spectrogram generated using the parameters selected above. They do not increase the frequency or temporal resolution. The enlarge and smooth option can be used to improve the appearance of printed spectrograms.

enlarge image by
The spectrogram image is enlarged by the specified factor. This option is equivalent to the menu ”Tools”/”Enlarge image” in the spectrogram window.

smooth image
The spectrogram image is smoothed. This option is equivalent to the menu ”Tools”/”Image Filter: Average” in the spectrogram window.

enable waveform editing
This option enables the use of the spectrogram window command Tools/Remove erased spectrogram sections from waveform.
Window
This button will show a detailed graphical display of the selected Evaluation Window.

Selectivity
This button will show a detailed graphical display of the frequency selectivity of the selected Evaluation Window.

Threads
This list box determines the number of threads that are being used for calculating the spectrogram both on the main and the spectrogram window. When running the software on a multicore processor, the selected number of threads should be at least equal the number of cores (or processor threads) in order to speed-up the calculations. Depending on the capabilities of the specific computer (such as the hard drive data transfer rate for instance), multithreading can also be slower than the single-thread mode. In that case, a thread number of 1 should be selected.

wait
If more than one thread has been selected and this option is not activated, the spectrogram window will be launched before the spectrogram has been completed, which can accelerate the workflow. However, this may also lead to problems in conjunction with the Automatic Parameter Measurements tool.

init
When the above wait option is not activated, the ini option will indicate the uncompleted parts of the spectrograms by well-defined pattern. This initialization will however consume additional time.

Apply
Use this button to re-calculate the spectrogram using the current settings without closing the dialog box. This may accelerate the process of finding the best parameter settings.

Default
Sets the standard values for each parameter.

Spectrogram Overview
For better navigation through the loaded sound file a spectrogram can be displayed below the envelope curve display in the main window. This spectrogram can be activated by the menu "Analyze/Overview" or the button. Note that displaying the spectrogram needs more time for redrawing the window than without it.
Overview Parameters

The menu "Analyze/Overview-Parameter" can be used for selecting the display parameter of the overview spectrogram. It can be chosen between black&white and color display. In black&white display mode the threshold for spectrogram display can be adjusted. In color mode the intensity of the spectrogram can be adjusted. This is done by inputting a numerical value between zero and hundred or by shifting the vertical scroll bar. In color mode you can select different color tables and gradation tables.

The frequency resolution of the spectrogram can be defined by the following parameters:

- FFT Length (One half of this value corresponds to the spectrogram height.),
- Frame Size (Defines the percentage of the FFT Length that is actually filled with the waveform data.),
- Evaluation Window (Determines the suppression of spectrum distortion. Hamming window is the best choice in most cases.).

These parameters influence also the time resolution of the spectrogram. Higher frequency resolution is accompanied with lower time resolution. Time resolution is also influenced by the current window size and the zoom adjustment.

The combo-box titled y-scale enlargement allows enlarging the y-dimension of the spectrogram.

In large sound files displayed at a low temporal resolution, the default fast mode option will only display selected sample spectra out of the large file (with regular gaps between them), which means that short sounds may be hidden on the spectrographic overview display. If this option is unchecked, a continuous spectrogram is internally calculated (which may be time-consuming) and the spectral envelope will be displayed on the screen. To accelerate this kind of spectral envelope display, the option “Optimize waveform and spectral envelope overviews” on the File Open Dialog box can be activated.

The float FFT option will calculate the spectrogram using floating point arithmetic, which provides more accurate spectrograms with a better signal-to-noise ratio.

In multichannel files, the Show Channels section allows to select the individual channels that should be displayed on the overview window. Channels that are not selected will be hidden.
Apply spectrogram window parameters
Applies the spectrogram parameter settings (including FFT overlap) made for the spectrogram window to the main window overview display.

Normalize Envelope Curve
This menu option controls the scaling of the envelope curve displayed in the main window. If this option is checked the envelope curve is fitted into the display window. This allows better observation of soft sound signals. Please note, that the sound file itself will not be influenced.

Show Y axis grid
This option enables a Y axis grid and the associated labels.

Frequency cursor
This option activates a horizontal frequency cursor for measuring frequencies.

Step waveform display mode
This option enables the step display mode on the (high temporal resolution) graphic representation of the waveform:

activated:

not activated:

Fast Envelope Curve display
Toggles between fast and correct envelope curve display. If this option is checked, the display is completed faster. However, in large files under-sampling may occur.

Time axis format
The Time Axis Format dialog box allows to define the format of the time axis:

show sample index instead of time units: If this option is activated, the x axis will show the sample index instead of time units [s].

hh:mm:ss.sssss: This option activates the clock time display mode (hh:mm:ss.sssss) instead of the continuous display mode in seconds (ssss.sssss).
absolute clock time: In the clock time display mode (hh:mm:ss.sssss activated), this option adds the absolute time of day time to the time scale. There are a number of options for getting this absolute time-of-day offset:

time file created: The time offset is taken from the file systems *date creation* entry.

time file modified: The time offset is taken from the file systems *date modified* entry. Note that the absolute precision of the time offset will be limited by the available resolution of the file created/modified time and the properties of the recording device.

Broadcast WAVE bext origination time: The time offset is taken from the Broadcast WAVE bext chunk (origination time entry).

Broadcast WAVE bext timecode: The time offset is taken from the Broadcast WAVE bext chunk (time reference or timecode).

RECORDER software time stamp: The time offset is taken from the custom .wav file header entry created by the Avisoft RECORDER software. This option ensures a sample-precise time scale within a single monitoring session.

LANC time code on USG DI (LSB): The time offset is taken from a serial LANC time code signal that is stored on the USG DI track of the .wav file (recorded by using one of the UltraSoundGate units). This mode of operation requires that the LANC time code provided by a camcorder has been recorded into one of the DIN inputs of the UltraSoundGate. This setup allows to precisely synchronize the .wav file with video recordings. The LANC signal is provided by a number of SONY camcorders on their LANC socket (which is usually a 2.5mm stereo TRS connector or in newer models a 10-pin A/V terminal jack). Note that not all models actually provide valid time stamps on their A/V jack. This signal can be fed into the UltraSoundGate DI input by using a custom-made interface cable that has a 3-pole 2.5 mm TRS plug at one end (with the ring pin left unconnected) and a 2-pole 2.5 mm TS plug at the other end. Such a cable is available from Avisoft Bioacoustics.

SMPTE timecode on an analog channel, SMPTE timecode on USG DI (LSB): The time offset is taken from a SMPTE timecode signal that is stored either on an analog channel or on an USG DI track. A suited SMPTE to USG DIN adapter cable is available from Avisoft Bioacoustics.

clock reference pulses on USG DI (LSB): The time offset is calculated from the number of reference pulses on the USG DI track. It is assumed that the interval
of the external reference pulses is equal to one of the following values (allowing a deviation of ±10% relative to the internal sample clock):

1s, 500ms, 250ms, 100ms, 50ms, 25ms, 10ms, 5ms, 2.5ms, 1ms

The detected interval will be displayed (expressed in pulses/sec) in this dialog box once the OK button has been clicked. The option rising slope will use the rising slope (low-high transition) instead of the default falling slope (high-low transition) as the reference point.

Song Meter time stamp : The time offset is taken from the custom .wav file header entry (sub-chunk “wamd”) created by Song Meter © recorders of Wildlife Acoustics, Inc.

channel : This list box defines .wav file channel from which he LANC or SMPTE time code signal is taken.

ADC pipeline delay : Some analog-to-digital converters (such as those in the UltraSoundGate product family) introduce a pipeline delay relative to the digital inputs, which can be compensated here. The edit field allows entering the pipeline delay expressed in the number of samples. In the UltraSoundGate hardware, the delay is usually 20 samples.

One-dimensional transformations
This menu supports additional display options and transformation types of the marked sound file section. The results of these transformations will be displayed in a separate curve window. The following functions are available:

Time signal
The fine structure of the time signal is displayed. This display allows in contrast to the envelope display inside the main window a high-resolution observation and measuring of time signals.

Amplitude spectrum
The magnitude spectrum (y-unit [V]) of the marked section is computed. The resolution of the spectrum is proportional to the length of the marked section. (long term spectrum)
Power spectrum (logarithmic)
The power spectrum (y-unit [dB]) of the marked section is computed. It is referenced to the RMS amplitude (3 dB below the peak amplitude). The phase spectrum option will add the phase spectrum in rad units and the additional option **unwrap phase** compensates the original phase spectrum jumps in order to provide a smooth phase spectrum.

Power spectrum (averaged)
The power spectrum (y-unit [dB]) of the marked section is computed by averaging a series of short-term FFT’s (50% overlap). It is referenced to the RMS amplitude (3 dB below the peak amplitude). Use this option instead of the above (**Power spectrum (logarithmic)**) if the time interval is very long (more than several seconds).

Power spectrum (spectrum level units)
The power spectrum (y-unit spectrum level, SPL [dB]) of the marked section is computed. The SPL power spectrum is distinguished from the standard power spectrum by the term - 10 log (Bw): SPL = BL -10 log(BW), where BL is the band level of the standard power spectrum components and BW is the filter bandwidth in Hz. The spectrum level representation is useful for evaluating noise signals because the measurements are independent of the analysis bandwidth (the numbers are normalized to an analysis bandwidth of 1 Hz).

Power spectrum (level units, averaged)
Same as above except that the spectrum is calculated from a series of overlapped short-term FFT’s. Use this option instead of the above if the time interval is very long (more than several seconds).

The selectable “Evaluation window” will be applied to the entire marked section (except of the ‘averaged’ options). With window types other than “Rectangle”, the signals close to the margins will be under-estimated and signals in the middle will be over-estimated. Therefore, for analyzing single pulses (with silence before and after the analysis section), the “Rectangle” window should be selected. This will prevent any kind of distortion, which may occur when using one of the other window types. The other non-rectangle windows should only be used if there is no silence around the margins of the marked section.

The Amplitude and Power spectrum options provide an additional **LPC analysis** option. The **LPC option** activates an additional Linear Prediction Coding
procedure that is applied to the waveform before calculating the spectrogram. The LPC analysis option creates a smooth spectral envelope that indicates the major energy peaks. In primate vocalization analysis, it can help to track the formant characteristic. The number of the prediction coefficients determines the accuracy of the resulting smooth spectral envelope. The implemented LPC algorithm is based on the least-square estimation technique by using autocorrelation.

Octave Analysis

The octave spectrum (y-unit [dB]) of the marked section is computed by using a set of (FIR) octave filters complying with the ANSI S1.11-2004 standard. The output of the filters is linearly averaged and represents the mean RMS level. The **min center frequency [Hz]** list box defines the lowest octave filter. The maximum filter center frequency is determined by the sample rate of the sound file. The option **include total band power** adds the RMS level of the unfiltered signal to the end of the octave spectrum.

Third-Octave Analysis

The third-octave spectrum (y-unit [dB]) of the marked section is computed by using a set of (FIR) 1/3 octave filters complying with the ANSI S1.11-2004 standard. The output of the filters is linearly averaged and represents the mean RMS level. The **min center frequency [Hz]** list box defines the lowest third-octave filter. The maximum filter center frequency is determined by the sample rate of the sound file. The option **include total band power** adds the RMS level of the unfiltered signal to the end of the third-octave spectrum.

Autocorrelation

The autocorrelation function (ACF) of the marked section is computed. The ACF supports the recognition of periodical or correlated components in a signal.

Cepstrum

The Cepstrum of the marked section is computed. The Cepstrum is computed by determination of the inverse FFT of the logarithm of the power spectrum. Cepstral analysis supports the separation of several multiplied signal components (for instance in human speech).

Cross-correlation (stereo)

The cross correlation (CCF) between the left and right channel of the marked section of a stereo signal is computed. The CCF can be used for recognition of correlations between two channels. By using of two separated microphones the time delay of a noise signal can be determined by searching the maximum of the CCF.
Cross-correlation (2 files)
The cross correlation (CCF) between the marked section and the contents of the clipboard is computed. This requires, that the clipboard has been loaded with the signal to be compared (Menu EDIT/COPY). This kind of CCF can be used for observation of similarities between two sound files.

Transfer function (2 stereo channels)
This menu allows the determination of the frequency response of a system using Fourier transformation. The system input has to be supplied with a white noise signal. The left channel of the sound card has to be connected with the system input. The right channel has to be connected with the system output. After data acquisition is finished (a few seconds are sufficient) and a section has been marked the computation of the transfer function is started. Note, that the marked block must be longer than the selected FFT size. If the marked section is longer, than several frequency responses are averaged. This will increase the precision, but the computing time is rising. This computation method of the frequency response delivers exact results only at those frequencies, where the magnitude of the input signal is high enough. For this reason, those spectral lines of the frequency response that don't exceed a threshold within the input spectrum are suppressed in the display window. This threshold can be changed by the slider on the right of the display window. This method of displaying allows using test signals, which don't have a continuous spectrum. You could use a rectangle signal, where you can obtain valid values only at the frequencies $f_0, 3f_0, 5f_0, \ldots$. Because of the algorithm used ($|G(f)|=|S_{xy}(f)|/|S_{xx}(f)|$) the frequency response is precise even if there are noise sources within the system.

Frequency response, sine sweep mono
This command computes the frequency response of a system from a sine sweep test signal passing the system. It is assumed, that the test signal (sine wave with varying frequency and constant amplitude) is fed into the input of the system without distortion. The sine sweep altered by the system is then analyzed by consecutive short-time FFT’s. The maximum amplitude and the frequency of that maximum are extracted from each block. The result is a frequency response plot showing amplitude against frequency. The plot is normalized relative to the maximum amplitude. The ‘Evaluation window’ determines the precision of amplitude measurements. The FlatTop window is recommended for optimal results. The FFT size determines the precision of frequency measurements. High values provide more precise frequency values. However, high values will reduce the number of amplitude samples (each FFT block supplies one amplitude sample), which requires longer and slower frequency modulated test signals. An FFT size of 512 in conjunction with a test signal sweeping from 0 to the Nyquist frequency within 20 seconds is recommended. The sine sweep test signal can be generated using the command Edit/Synthesizer/dialogue.
The **Increment** listbox defines the frequency axis sampling method. The default option **adaptive** will create a sample for each of the FFT spectra, while the other frequency options will output only provide a limited number of samples depending on the selection.

Frequency response, sine sweep stereo

This command computes the frequency response of a system from a sine sweep test signal passing the system. In contrast to the command above, the test signal is sampled at both input and output of the system (using left and right channel of a soundcard). The amplitude samples taken from the output are divided by those taken from the input. This method eliminates eventual precision degradation caused by nonlinear test signals (varying amplitude depending on frequency). Therefore this command should also be used, if it is impossible to feed the test signal into the input of the system without frequency response distortion. In case the amplitude of the test signal is decreased by the system dramatically, an additional amplifier might be necessary. For parameter settings see the command **Frequency response, sine sweep mono**, described above.

Histogram

The histogram of the samples occurred inside the marked section is computed. The number of classes can be defined in dependence of the sound file resolution (bit-count). The histogram display can be used for the evaluation of the quality of the analog to digital converter.

XY Plot

The amplitudes of two channels are plotted against each other.

XYZ Plot

The amplitudes of three channels are plotted against each other.

Impulse Density Histogram

The time intervals between short signal impulses are displayed in a histogram. The detection of the signal impulses is done by a threshold comparison of the envelope of the time signal. For the adaptation of the algorithm to the signal to be analyzed several parameters can be adjusted:

Threshold:

The threshold is defined as a percentage of the maximum of the envelope. If the envelope exceeds the threshold, an impulse is recognized.

Delay:

Because the signal impulses have certain duration and the multiple recognition of the same impulse is undesired, a delay time is required. When the beginning of an
impulse has been recognized, no further impulse is recognized for the delay-time, even if the threshold is exceeded. The delay should be a little bit longer than the maximum impulse-width in order to prevent multiple recognition’s of the same impulse. Note, that close impulses cannot be recognized if the delay is too long!

Resolution:
The resolution determines the time raster for the acquisition of the impulse density histogram.

Impulse Rate
The time intervals between short signal impulses are displayed. The detection of the signal impulses is done by a threshold comparison of the time signal. For the adaptation of the algorithm to the signal to be analyzed several parameters can be adjusted:

Threshold:
The threshold is defined in percent of the maximum of the envelope. If the time signal exceeds the threshold, an impulse is recognized (slope based).

Delay:
Because the signal impulses have certain durations and the multiple recognition of the same impulse is undesired, a delay time is required. When the beginning of an impulse has been recognized, no further impulse is recognized for the delay-time, even if the threshold is exceeded. The delay should be a little bit longer than the maximum impulse-width to prevent multiple recognitions of the same impulse. Note, that close impulses cannot be recognized if the delay is too long!

Lorenz plot
The Lorenz plot (also called phase space display) displays the time intervals between three consecutive pulses in a 3D display. This kind of display may be useful for evaluating the randomness of pulse intervals. In constant pulse rates the Lorenz plot will display all pulses at the same location. In constantly rising or falling pulse rates, the pulses will be displayed along a straight line in 3D space. If the pulses are more randomly spaced, the consecutive pulses will be displayed at larger distances from each other within a larger cloud in the 3D space. The algorithm for the impulse interval measurement is the same as described for the *Impulse Rate* function above.
Envelope (analytic signal)
The envelope of the marked section is computed. This is done by the analytical signal method using Hilbert transformation. This method allows a more precise result as the envelope display in the main window.

Instantaneous frequency
The instantaneous frequency of the marked section is computed using the analytical signal method with Hilbert transformation and differentiating filter. The duration of the marked section is limited to 65536 samples.

For isolation of separated signal sections the instantaneous frequency is displayed only if the envelope of the signal exceeds a certain value. This threshold is defined in percent of the maximum value of the whole envelope. The scroll bar on the right of the curve window allows the adjustment of the threshold. Especially for analyzing of fast changing sine-signals this method is advantageous compared to a spectrographic representation.

Zero-crossing analysis
A zero-crossing analysis of the marked section is carried out. The duration of the marked section is not limited. The parameter *Resolution* determines the temporal resolution of the output curve. The combo-box *Average over* allows selecting the method of averaging. By selecting the first entry (which corresponds to the *Resolution* edit field), the zero-crossing measurement will be averaged over that time. By selecting one of the following entries (x cycles), the measurement will be carried out over the specified number of cycles. In that case an appropriate *Resolution* values should be chosen, so that temporal details will not be lost.

The implemented zero-crossing algorithm uses linear interpolation to increase the frequency resolution.

For isolation of separated signal sections the zero-crossing analysis is displayed only if the envelope of the signal exceeds a certain value. This threshold is defined in percent of the maximum value of the whole envelope. The scroll bar on the right of the curve window allows the adjustment of the threshold.

Root mean square (linear) / (logarithmic)
The root mean square of the marked section is computed. The desired averaging time can be defined in the edit field "Averaging time". You can select the standard values FAST (125ms) or SLOW (1000ms) using the push buttons F and S. The option field "exp." determines if the averaging should be done exponentially (recursive) with the specified averaging time as time constant or arithmetically over the averaging time. The root mean square can be displayed linear or
logarithmic. For sound level measurements in dB the logarithmic root mean square should be used.

Envelope
The amplitude envelope of the marked section is computed. This is done by the following algorithm: The envelope follows the rectified waveform when its amplitude increases. When the input level falls, the envelope decays with the specified time constant, which will bridge valleys of the signal. The time constant should be adapted to the signal to be analyzed.

Gate function
This function can be used to analyze the temporal pattern of sounds. The amplitude envelope (see function above) is compared to a threshold level. The gate function will be 1 where the amplitude envelope exceeds the threshold, and it will be zero elsewhere. The threshold is specified in percent of the maximum amplitude (measurement range). In order to tolerate short amplitude gaps or noise bursts, the gate function output will only change when the internal state of the gate function is stable for a predefined minimum time interval (the Delay parameter). For proper operation, the Delay parameter must be smaller than the minimum total duration of the pulses. The Delay parameter will also influence the time resolution of the gate function.

Gate function (signal/silence duration)
This function is similar to the gate function above. The only difference is the format of the output. In contrast to the above gate function that represents the output as a time-continuous sequence of ones and zeroes, this option returns the durations of the signal events and the preceding silent periods. The y-values (pulse durations) are positive for signal events, and negative for silent periods between signal events. So the output is an alternating sequence of positive event durations and negative inter-event durations, where the x-axis represents the index of the events.

Gate function (interpulse interval)
This function is similar to the Gate function (signal/silence duration), except that it provides the total time intervals between the beginnings of consecutive pulses (interpulse interval). This function is comparable to the Impulse rate function that uses a simple amplitude threshold instead of the more complex gate operation for measuring the interpulse intervals.
Pulse Train Analysis

The Pulse Train Analysis option allows measuring the temporal parameters of waveforms automatically. That includes both simple counting of sound pulses or calls and even more complex measurements as interpulse intervals and pulse group analysis. There are various envelope tracking and pulse recognition algorithms that can be selected depending on the type of signals to be analyzed.

Basically, the Pulse Train Analysis procedure consists of the following stages:

1. Generating the envelope of the waveform,
2. Pulse detection,
3. Post filtering (optionally rejecting gaps and short pulses)
4. Pulse counting, Measuring interpulse intervals, durations, amplitudes and time stamps
5. Group analysis for identifying pulse groups that are separated from each other by larger intervals.

The Pulse Group Analysis function is usually launched from the main window command ‘Analysis’/’Pulse Train Analysis…’. The analysis can be limited to a subsection the entire sound file by marking a section before executing the Pulse Group Analysis command.

Alternatively, the Pulse Train Analysis suite can be activated from the Curve window when it already displays an envelope (Display/Pulse Train Analysis…).

Depending on the quality of the sound recordings it might be necessary to high-pass filter the waveform before applying the Pulse Train Analysis (main window command Edit/Filter/Time Domain IIR Filter…). This procedure would remove irrelevant low-frequency noise that might otherwise prevent a proper envelope analysis. Similarly, it is possible to run the Pulse Train Analysis directly on a spectrogram slice taken from the spectrogram window (first activate Display/Additional Spectrogram Information/Time axis/’Single frequency’ or ‘Frequency Interval’ and then transfer the frequency slice into the curve window by double-clicking at the graph or via File/Data Export/’Copy Envelope into Curve window’).

The envelope of the currently loaded sound file and the detected sound pulses will be displayed in a separate Curve window. Additionally, a Pulse Train Analysis panel is launched. It allows adjusting the analysis settings and displays the results numerically. For the successful application of the Pulse Train Analysis feature it is essential that the analysis parameters (time constant, threshold, …) and the analysis methods have been selected properly. Usually, it is required to optimize the settings interactively until the desired behavior is reached.
Settings…

This dialog box allows selecting the available pulse train analysis methods and the desired measurements.

Methods

Envelope

This list box offers the available envelope calculation methods. Any quantitative analysis of waveforms requires some kind of amplitude envelope detection. For the temporal analysis of waveform patterns, it is usually not required to look at single oscillations on the original waveforms. So, it is appropriate to trace the outline of a waveform only. There are several approaches for computing the envelope or a meaningful approximation of the variation of long-term amplitude of a waveform.

Rectification + exponential decay

The original waveform is first rectified (all negative samples will be inverted). The resulting envelope follows the rectified waveform as long as the amplitude is rising. If the amplitude of the rectified waveform decreases (negative slopes), the most recent peak amplitude decays exponentially at a pre-defined time constant (peak-hold mechanism). In this way, the small instantaneous amplitudes between consecutive waves will be bridged.

Rectification + exponential decay + decimation

This option is identical to the above option, except that the sample rate of the resulting envelope will be reduced (decimation). The amount of decimation is selected according to the time constant of the envelope computation. The final resolution of the decimated envelope is displayed on the main Pulse Train Analysis panel. The additional decimation decreases the temporal resolution of the final measurements but accelerates the processing and displaying of the envelope, which is certainly important while processing large files.

RMS + decimation

The root mean square of the waveform is computed block wise (averaging over a discrete number of samples without overlap). The inherent decimation corresponds to the ‘time constant’ parameter. In contrast to the option ‘Rectification + exponential decay’, this computational method does not include a peak-hold mechanism. Consequently, short amplitude peaks will be averaged out. Therefore, the RMS method is suited in situations where short peaks need to be rejected or are out of interest.

RMS exponential moving average+ decimation

The root mean square of the waveform is computed in a moving average mode. The resulting envelope is decimated according to the selected time constant. In
contrast to the option ‘Rectification + exponential decay’, this computational method also does not include a peak-hold mechanism.

Original waveform (no manipulation)
The original and unmodified soundfile is used for the peak search.

The Envelope method can only be selected when the Pulse Train Analysis command has been launched directly from the main window waveform display. The other entry points already operate on existing envelopes. The properties of these envelopes must be set before entering the Pulse Train Analysis command (e.g. by selecting appropriate Spectrogram Parameters if the Pulse Train Analysis is applied to a spectral slice of a spectrogram).

Pulse detection

There are three basic methods for detecting pulses in the amplitude envelope:

Gate Function
The gate function simply compares the envelope with a pre-defined, fixed threshold. The absolute threshold level will heavily influence the number and durations of the recognized pulses. This method is recommended for analyzing signals that exhibit only minor amplitude variations.

![Gate Function Example](Image)

Peak Search with Hysteresis
In addition to the absolute threshold, this method is based on a relative peak detection algorithm that identifies local peaks in the envelope signal. A peak is recognized when its peak amplitude exceeds the minimum amplitude that precedes this peak by a predefined factor. In this way, it is possible to detect both soft and louder peaks that could not be detected by a simple absolute threshold comparison (Gate function). Most sound recordings contain some reverberation (short-term echoes). That reverberation can prevent the safe separation of the single sound pulses with varying amplitudes in simple gate function analysis set-ups. Therefore, this method is recommended for analyzing signals that exhibit larger amplitude variations. It is certainly useful for analyzing signals with varying amplitudes that are additionally influenced by reverberation.
Valley Search with Hysteresis
The valley search algorithm is similar to the above peak search, except that it detects local valleys that come below the threshold.

Measurements
The Measurements section allows selecting the measurements that should be taken.

Time : Absolute time stamp of the pulse.

Time relative to group start : In the group analysis mode, the relative time stamp of each pulse is referenced to the first pulse of the group.

Duration : The duration is determined by the threshold settings. It is measured from the point where the signal exceeds the threshold to the point where the signal falls below the threshold level.

Interval : Interpulse interval between pulses, measured from the start of the preceding pulse to the start of the current pulse.

Amplitude : The peak amplitude of the pulse. The dB option will output result in dB units.

Peak frequency / Bandwidth / Wiener Entropy : An FFT analysis is applied to the detected pulse in order to determine the peak (or dominant) frequency, bandwidth or Wiener entropy. The ‘Setup…’ button launches a dialog box that defines the spectral analysis settings:

The FFT size determines the maximum duration of the analysis frame. The resulting Frame duration and the resulting Frequency resolution of the currently selected FFT size is displayed.

The weighting Window is applied to the analysis frame prior to calculating the FFT spectrum. Depending on the structure of the pulses, the specific window type may influence the peak frequency results. The Rectangle window will not influence the temporal structure (the location of the pulse within the analysis frame
does not matter). The other weighting functions emphasize the middle of the analysis frame, which may distort the frequency spectrum. In case the pulses have a distinct start and end and the analysis frame fully covers the pulses, then the Rectangle window is recommended. In case the analysis frame is shorter than the pulse (pulses longer than the FFT size), then one of the other weighting functions will provide more reliable results.

The option ‘limit the analysis frame to the detected pulse duration’ activates a zero-padding mode. If activated and if the pulse is shorter than the selected FFT size, then the FFT spectrum will be computed only from the detected pulse duration. Otherwise, the actual duration of the pulse is ignored and the spectrum is computed from the full (FFT size) frame that is centered on the detected pulse. This option does only have an effect as long as the durations of the pulses are determined (‘Gate function’ or ‘Peak search with Hysteresis with the ‘Duration’ activated). In case the duration is not available, spectrum will always be computed from the full FFT size. In that case, it is also recommended to adjust the FFT size to the durations of the pulses.

The Bandwidth Settings define the threshold for the bandwidth calculation and the way how the bandwidth is determined. If the total option is activated, the bandwidth will cover all peaks that exceed the threshold. Otherwise, the bandwidth will only cover the maximum peak exceeding the threshold.

Add filename: The name of the current sound file. The related option to each row will add the filename to every row – otherwise it will only be added to the first (pulse) row. The option with path will include the entire pathname.

Group Analysis
The group analysis option allows assigning close pulses to single groups.
Time: Absolute time stamp of the group (= time stamp of the first pulse in the group).
Pulses / Group: Number of pulses in the group.
Pulses / Sec: Pulse rate within the group (number of pulses per second).
Duration: Duration of the group (from the start of the first pulse to the end of the last pulse).
Interval: Interpulse interval between groups, measured from the start of the preceding group to the start of the current group.
Amplitude: The peak amplitude of the group (the maximum peak within the group).

use section labels as groups: If this option is checked, the groups will be defined by section labels (instead of the group time setting).
Overall Measurements

Pulse count: The total number of pulses.

Pulse rate: The total pulse rate (pulses per second) measured from the start of the first pulse to the start of the last pulse.

Group count: The total number of groups.

Group rate: The total group rate (groups per second) measured from the start of the first group to the start of the last group.

On time (absolute in sec): The total duration of all pulses.

On time (relative in %): The total duration of all pulses (except the last one) divided by the time interval from the start of the first pulse to the start of the last pulse.

referred to the entire waveform: If this option is activated, the *On time (relative in %)*, *Pulse rate* and *Group rate* will be referenced to the duration of the entire waveform (instead of the duration from the first to the last pulse).

Apply an upper amplitude limit: If activated, pulses whose peak amplitude exceed a user-defined limit will be ignored.

Show pulse numbers: If this option is activated, their number will identify the recognized pulses on the envelope display.

Take channel #: This list box selects the sound file channel on which the Pulse Train Analysis is done.

DDE / LOG: This button launches the DDE Parameters / Log File dialog box. These settings are used for exporting the measurement results via the Copy buttons.

Default: This button will reset all settings to their defaults.

time constant: When the Pulse Train Analysis is launched from the main window, the envelope of the marked section is computed automatically. The time constant for that envelope computation can be entered here (unit milliseconds). Click at the Update button for re-computing the envelope with the newly entered time constant. The envelope computation method can be selected from the Settings dialog box. The value of the time constant (and the envelope computation method) will heavily influence the
pulse train analysis results. So, that value should be adapted to the kind of signals to be analyzed. Generally, waveforms with low pulse rates and long pulses should be processed with larger time constants. Shorter pulses or higher pulse rates require shorter time constants.

threshold

The pulse detection is based on a threshold comparison on the envelope. Depending on the selected pulse detection method (Settings dialog), this threshold controls the pulse recognition. In the ‘Gate Function’ method, a pulse is detected once the envelope exceeds the threshold level. In the ‘Peak search with Hysteresis’ method, any peaks that do not exceed the threshold level will be ignored (the actual peak detection is controlled by the hysteresis parameter). The threshold level can also be entered visually by dragging its graphic representation on the envelope curve display. The rel. option will specify the threshold level relative (expressed in dB) to the peak of the entire envelope curve. Use this option to compensate for varying signal amplitudes.

hysteresis

If the pulse detection method ‘Peak search with Hysteresis’ has been selected, then the hysteresis parameter controls the peak detection (in conjunction with the threshold parameter). The underlying algorithm searches for local peaks in the envelope. A peak is recognized when its peak amplitude exceeds the minimum amplitude that precedes this peak by a predefined factor. This factor that is expressed in dB (the hysteresis parameter) should be adjusted in such a way that the relevant peaks are still recognized, while smaller irrelevant noise peaks are ignored. As a rule of thumb, the hysteresis parameter should be set to a value slightly lower than the signal to noise ratio of the recording (where the reverberation is also considered as noise). In most cases a hysteresis between 10 and 20 dB is appropriate. Please note that the pulse detection results are influenced both by the hysteresis and the time constant of the envelope generation.
start/end threshold
If the pulse detection method ‘Peak search with Hysteresis’ and the measurement option ‘Duration’ have been selected, the start/end threshold controls the pulse duration and time stamp measurements. This relative threshold is referenced to the peak amplitude of each pulse. Therefore, lower values (e.g. –20 dB) will provide longer durations than higher values (e.g. –10 dB). For internal reasons, the absolute value of the start/end threshold parameter must be smaller than the hysteresis parameter. Therefore, the start/end threshold parameter will be decreased automatically when the hysteresis parameter becomes smaller than the start/end threshold.

group time
If the Group Analysis option has been activated from the Settings dialog, then this group hold time parameter determines which pulses are grouped together. All pulses that are closer than the group time parameter will be associated to a single group. So, this parameter should be set to a value that is significantly larger than the longest break between the pulses that should be assigned to a single group. The group time is expected in milliseconds and applies to the time intervals between the start of a pulse and the end of the preceding pulse. If there is no information on the duration (method ‘Peak search with Hysteresis’ and the Duration option not activated), then the start and end of a pulse is the same and the group time simply applies to the inter-pulse interval.

Post filter
The post filter allows to further improving the reliability of the pulse detection mechanism. Short gaps within a sound burst can be rejected so that originally two close pulses are treated as a single element. Similarly, single short pulses can be rejected.

enable
This check box enables the Post Filter. Certainly in conjunction with the pulse detection method ‘Peak search with Hysteresis’, there are several parameter settings that all influence the final pulse detection. Therefore, it is recommended to disable the post filter until the threshold and hysteresis parameters have been adjusted properly.

hold time
The hold time controls the rejection of short gaps. Any gap shorter than the hold time will be rejected.
pulse detection without hold time

pulse detection with a post filter hold time set to 16 msec

min dur.
The minimum duration parameter controls the rejection of short single pulses. Pulses shorter than the min dur. parameter will be rejected.

The hold time and min dur. entries require to confirm the modification made by clicking at the Update! button in order to re-compute the results.

Close
This button abandons the Pulse Train Analysis.

Update!
This button reads the current entries from the parameter edit boxes and updates the pulse train analysis results.

Pulse analysis results
The results of the pulse train analysis are displayed in the list box on the left. Only those Measurements that have been selected from the Settings dialog will be listed here.

Copy
This button copies the contents of the pulse list into the Windows clipboard. The ASCII-formatted table can then be pasted into another application (e.g. Excel).
Optionally, the data will be transferred via DDE or written into a LOG file. The required settings can be made from the DDE / LOG button on the Settings dialog box.

Save
This button saves the list into an ASCII file.

Head
The column titles of the list will be copied into the clipboard. This may help identify the various entries in the list.

Label

The *Create Labels* dialog allows creating labels for either pulses or pulse groups. These labels can for instance be used for a subsequent spectral analysis step within the spectrogram window (Automatic Parameter Measurements with the *Element separation* set to ‘interactively (section labels)’).

Label text
The Label text section lists all available measurements that can be copied to the text label.

Layer
The Layer list box defines the layer of the section labels.

Delete previous labels
If this option is activated, all previously existing labels will be deleted.

Default
This button sets all parameters to their defaults.

Overall measurements : Pulses

The Overall Measurements selected from the *Settings* dialog are displayed on the right of the pulse list.

Copy
The Copy button located at the top of the Pulses section will copy the above overall measurements into the clipboard.

Group analysis results
The results of the group analysis are displayed in the list box below the pulse list. Only those Group Analysis Measurements that have been selected from the *Settings* dialog will be listed here.
Copy
This button copies the contents of the group list into the Windows clipboard. The ASCII-formatted table can then be pasted into another application (e.g. Excel).

Optionally, the data will be transferred via DDE or written into a LOG file. The required settings can be made from the DDE / LOG button on the *Settings* dialog box.

Save
This button saves the list into an ASCII file.

Head
The column titles of the list will be copied into the clipboard. This may help identify the various entries in the list.

Label
This button creates a label for each recognized group. See Create Labels for details.

Overall measurements : Groups

The Overall Measurements selected from the *Settings* dialog are displayed on the right of the groups list.

Copy
The Copy button located at the top of the Groups section will copy the above overall group measurements into the clipboard.
Specials >

Copy energy of marked section
Copies the energy of the marked section into the clipboard. The energy is the sum (integral) of the squared amplitudes multiplied by the sampling time. The unit is 1 V*V*s

Copy RMS of marked section
Copies the RMS of the marked section into the clipboard. The RMS is the root mean square. The unit is 1 Volt.

Copy peak-to-peak of marked section
Copies the peak-to-peak amplitude of the marked section into the clipboard. The unit is 1 Volt.

Time-delay-of-arrival (TDOA) measurements

It is possible to determine the position of a sound source (e.g. an animal) by means of an array of microphones (passive acoustic location). The time differences at which the sound signals arrive at these microphones can be computed by cross-correlation. If the positions of the microphones are known, the position of the sound-source can then be calculated by using a set of hyperbolic equations.

The command **Copy single TDOA from marked section** computes the delay of a signal that is present in all channels by using a cross-correlation technique. Only the marked section will be used for the cross-correlation. The marked section should cover the signal to be measured in all channels. Otherwise, the algorithm will provide wrong results. The multi-channel sound file necessary for two- or three-dimensional location can be created from several mono or stereo wav-files by the **Add channel(s) from file** command in the “File” menu. Alternatively, multi-channel files can be imported from external non-wav files acquired by other data acquisition devices (see **Import-Format** for details).

The maximum of the cross-correlation function is searched and its position is taken as the delay between each pair of channels.

The results of the time delay determination between all channels will be copied into the clipboard and can be additionally transferred via DDE into a spreadsheet application like Excel. The delays are represented as floating point numbers (unit 1 second) in the ASCII format. Tabulators separate the single values. If there are more than two channels, the sequence of the values is as follows:

(1-2) (1-3) (2-3) (3 channels: first value is the delay between channel 1 and 2, the second value is the delay between 1 and 3 and third value is the delay between 2
and 3. The first value (2-1) will be positive, if the signal arrives first in channel 1 and then in channel 2.

\((1-2) (1-3) (1-4) (2-3) (2-4) (3-4)\) (4 channels),

\((1-2) (1-3) (1-4) (1-5) (2-3) (2-4) (2-5) (3-4) (3-5) (4-5)\) (5 channels, and so on)

The command **Copy multiple TDOA’s from section labels** does the same as **Copy single TDOA from marked section**, except that the computations will be made for all section labels instead of the marked section. CR control characters will separate the results for each label.

The option **Add time stamps** will add a time stamp to each TDOA data set. This will allow to track both path and speed of the sound source. The time stamp represents the middle of the time interval from which the TDOA has been computed. When the following option **Add duration** is activated, the time stamp represents the start of the time interval.

The option **Add duration** will add the duration of the underlying waveform section from which the TDOA has been computed.

The option **Add amplitudes** will add the peak-to-peak amplitudes of the underlying waveform sections from which the TDOA has been computed (order: channel1, channel2, …).

The option **Add label** will add the text labels of the associated section labels from which the TDOA have been computed. This entry will be empty for the command **Copy single TDOA from marked section**.

The option **Take positive CCF maximum only** will search for the positive maximum of the cross correlation function. If this option is not activated, it will search for the maximum on the absolute magnitude values, which means that also a negative peak can be determined as the position of the maximum correlation.

Detect waveform events and create section labels

See *Create section labels from waveform events*, page 94.

Detect and classify waveform events

See *Create section labels from waveform events*, page 94 and *Classify labeled sections*, page 101.
Scan for template spectrogram patterns

This classification command allows to identify certain spectrogram patterns by using a spectrogram cross-correlation algorithm. The entire sound file is continuously compared with a user-defined set of template spectrograms. The comparison is done by computing a two-dimensional spectrogram cross-correlation function (CCF). A subsequent peak search on the resulting CCF trace provides the time stamps of the occurrence of the template patterns within the soundfile. The name of the template spectrogram that provides the maximum correlation coefficient (the highest degree of similarity) within a user-defined time interval (masking interval) is considered as the class membership of the unknown event.

The template spectrograms that have previously been saved from the spectrogram window command “File”/”Save Spectrogram (ASCII/Binary)...” as .son files can be selected from the Select button or simply by drag-and-drop. The launched File Open dialog allows to select several files at once (by using the <Shift> or <Crtl> keys). All template spectrograms must reside in the same folder. The templates must have been created with corresponding spectrogram parameters (same FFT length, frame size, overlap and sample rate). Also, the sample rate of the sound file to be examined must correspond to the sample rate at which the template spectrograms have been created.

In order to reject low-frequency noise that might disturb the correlation procedure, a high-pass cutoff frequency can be specified. All spectrogram components below that frequency will be ignored. Accordingly, the low-pass cutoff frequency setting will exclude any signal components above the specified frequency.

For tolerating slight frequency deviations between the templates and the unknown sounds, a max frequency deviation can be specified. Depending on the frequency resolution of the template spectrograms and the specified maximum deviation, the cross-correlation will be repeated for various frequency shifts. The maximum correlation coefficient is taken as the similarity score. The cross-correlation algorithm is similar to that of the Avisoft-CORRELATOR application (see the online help or the manual of that application of details).

The identification threshold controls the peak search on the CCF traces.

This threshold is applied directly to the cross-correlation coefficients. Sound events that cause CCF coefficients below that threshold will be ignored. Once a peak exceeds the threshold, it will be taken as a potential sound event of the associated class. If you have selected more than one template spectrogram, the algorithm also searches for peaks on the other template channels that occur shortly before and after the original peak. If there are higher peaks on the other template channels
within the masking interval, the sound event will be assigned to the class that provides the highest peak.

Slight deviations between the template spectrograms and the sound event under question might prevent the proper recognition of its class memberships. Adding more templates that cover as much variations as possible can compensate this problem (at the expense of computing time). In order to get unified class names for all variations, the filenames of the spectrogram templates (.son) that should belong to the same class must start with identical names. The unified class names must be separated from the rest of the filename by either a dot (.) or an underscore (_). The following set of templates would create two classes only (e1 and e2). e1_v1 and e1_v2 represent variations that refer to the same class.

```
e1_v1.son
e1_v2.son
e2_v1.son
e2_v2.con
```

If the option Mark detected events by labels is activated, the results of the classification procedure will be stored into labels that are displayed on the waveform and spectrogram displays. The option Create section labels (instead of single-point labels) will generate section labels instead of the standard single point labels. The durations of these sections will be determined by the durations of the associated template spectrograms. The margin parameter will additionally dilate the section labels by the specified time interval.

The desired section label layer to which the labels should be assigned can be selected from this list box.

The option Filter Classification Results allows to pick out a single class out of the classified sound events (by ignoring all events that have been assigned to other classes). The take class list box selects the desired class. The option replace label texts with index will assign an incrementing index to the filtered events.

The Default button will set all parameters to their default settings.

The classification procedure is initiated by clicking at the Start button. A new classification report window will appear (see page 105).
Edit

The menu "Edit" supplies different functions for editing the loaded sound file. These functions can be used to remove undesired disturbance signals or to generate artificial songs for playback experiments. These functions use a program specific clipboard that is not identical with the Windows-clipboard.

Undo

Returns to the file as it was before the last modification.

Redo

Repeats the last command (except File/Open, File/Record, ...).

Copy

The marked section is copied into the clipboard.

Paste

The marked section is replaced by the contents of the clipboard.

Cut

The marked section is removed and copied into the clipboard.

Trim

The samples outside the marked section will be removed. If there is no marked section all samples outside the visible section will be removed.

Change Volume

The volume of either the marked section (apply to marker) or the labeled sections (apply to label) is changed. The following operations are supported:

- **Constant**
 The marked section is changed by a constant value. The edit-box "a=" allows to input the desired value. A factor of 2 will amplify the signal by 6dB. A factor of 0.1 will decrease the volume by 20dB. Use the dB option for directly entering dB values.
In the edit box **ton/off** you can specify the duration of the soft transition on the edges of the marked section. The shape of this transition can be selected in the list-box behind (linear, sine 1/2, sine 1/4)

Normalize
The marked section will be normalized to the desired percentage of the dynamic range. As a result the maximum of the marked section will be equal to the specified value. In order to remove bias offset from the signal, the option ”Remove offset” should be checked. Otherwise, bias offset, which can be caused by poor soundcards, may distort the normalize operation.
This normalizing function can be used in order to generate comparable spectrograms from recordings with different recording levels.

Fadeln
Inside the marked section the amplitude is altered continuously from zero to 100%. The shape of tapering can be selected in the list box behind (linear, sine 1/2, sine 1/4).

FadeOut
Inside the marked section the amplitude is altered continuously from 100% to zero. The shape of tapering can be selected in the list box behind (linear, sine 1/2, sine 1/4).

(Amplitude modulation / Multiplication with)
a-t ASCII-file
The marked section is multiplied by the selected amplitude envelope ASCII-file (extension ".at"). The **Edit** button below allows editing the selected amplitude envelope file graphically. A new envelope can be created by specifying a new file name (extension .at). In the appearing curve window, the envelope can be edited by mouse drawing. Existing points can be moved by left clicking and dragging them to a new location. A point can be removed by right clicking on it. The entire shape can be removed by the menu option **Edit/Reset Shape** of the curve window. New points are inserted by left clicking at the lines between points. In order to enter the modifications made in the curve window, the shape must be saved by the **Save** button of the Change volume dialog box.

WAV-file
The marked section is multiplied by the selected WAV-file (extension ".wav").

Clipboard
The marked section is multiplied by the contents of the clipboard (WAV-file).
Modulation freq.
The marked section is multiplied by a sine shaped modulation frequency (carrier = fc) of the specified frequency. Each frequency component (fs) of the sound file will be split into two different frequency components with half amplitude: fc+fs, fc-fs.

Limit to
The marked section is limited to a predefined level. The option "sine" instead of "linear" supplies a soft transition into saturation.

Divide
If this option is active, the marked section will be divided by the file (instead of multiplication). This allows carrying out normalizing operations.

Delete
The marked section is deleted.

Delete with taper
The marked section is deleted with a soft transition at the margins. The transition interval (t on/off) can be defined from the command Change volume...

Insert silence
A silent block is inserted at the current inserting position. The length of the inserted block is determined by the length of the marked section.

Insert silent margins
Silent sections of the specified duration will be inserted at the start and the end of the file.

Mix
The content of the clipboard is added to the signal at the current inserting position. Take care that the signals to be added are small enough that no overflow can occur.

Reverse
The samples of the marked section will be reversed.

Info about Clipboard
This menu delivers information about the contents of the clipboard.
Single sample points can be edited by the mouse. To do this you have zoom into the file until the single samples become visible. When moving the mouse cursor across the horizontal lines representing the single samples the mouse cursor will change into a vertical double arrow. By shifting that lines up or down the samples can be edited.
**Compress >

Remove silent sections

Settings

This command will remove the silent section from a sound file. Those parts of the file that are softer than a predefined threshold will be removed from the file. Though, the original temporal structure of the sound file is saved along with the waveforms, which still allows measuring the original time structure. Red ticks at the top of the waveform and spectrogram displays indicate the removed silent sections.

The settings for this command can be made from Edit/Compress/Settings…

The sound event detection is based on a simple threshold comparison on the rectified waveform. Silent sections that last longer than the *hold time* or those are at least twice the *margin* will be removed. Additionally, a user-defined *margin* can further dilate the preserved sections around the significant sound events. See *Create section labels from waveform events* (see page 94) for details on how to adjust these parameters (internally, the software first creates section labels for the detected sound events and subsequently removes the gaps between those labels).

It is possible to execute this command automatically on each file that is opened in Avisoft SASLab Pro. To enable this mode of operation, activate the option *Actions/On new sound file/Remove silent sections*. A corresponding option is also available in the *Browse* command (see page 21).

Background noise (e.g. wind noise) might prevent a proper element separation. Therefore, it might be useful to first remove the noise (e.g. by high-pass filtering).

Remove gaps between section labels

This command will remove the gaps between the currently existing section labels. The original time structure will be saved in the .wav file header for later reconstruction by the option *Expanded view*. The resulting cutting locations are shown by short vertical marks at the top of the waveform and spectrogram display.

The command is only available for uncompressed or expanded files. Section label input can be easily done by left clicking at the waveform / spectrogram, while the shift key is pressed. Subsequent switching between a compressed and uncompressed view is possible by the option *Expanded view*.
A similar, but automatic command for sound file compression is the spectrogram window command *Automatic Parameter Measurements / Remove gaps between detected elements from sound file...*

In compressed files, where inter-call sections have been removed, exact time measurements between the single sound pieces are still possible. Therefore this compressed view may be certainly useful for analyzing signals with large silent inter-call sections (e.g. bat echolocation signals).

Remove gaps between (section) labels and keep labels

This command is similar to the above, but will retain all the labels. The appearing dialog box allows to add an additional margin before and after each label. In contrast to the command ‘*Remove gaps between section labels*’, it is also possible to use normal single point labels.

Expanded view (restored time structure)

This option toggles between compressed and expanded view in files, which have previously been compressed by the commands *Edit Remove gaps between section labels, Remove silent sections Remove gaps between detected elements from sound file...*. Even in the compressed view mode (Expanded view option is not checked), temporal measurements based on the original time structure (before compression) are still possible both in the main and spectrogram window. The original temporal information can be deleted by the command *Delete time compressing information from file*.

Save segments into numbered .wav files

This command saves each segment of a compressed .wav file into separate numbered .wav files. The destination folder can be entered either directly into the *Destination directory* field or via the *Select Directory* button.(…).

Synthesizer >

Synthesizer (dialog-based)…

See page 219.

Synthesizer (graphically)…

See page 223.
Insert white noise...
This command inserts a white noise signal at the current cursor position with the duration specified in the ‘Set Duration’ dialog box.

Insert pink noise...
This command inserts a filtered noise signal at the current cursor position with the duration specified in the ‘Set Duration’ dialog box. After specifying the desired duration, a ‘Frequency Domain Transformation (FFT)’ dialog box is launched, which allows to define the spectral characteristics of the noise signal. The default option ‘Lowpass’ and ‘1/f’ will create pink noise, whose 1/f shape starts at the specified corner frequency (ft). Alternatively, the (white) noise signal can be bandpass filtered (Bandpass option).

Insert time code / pulse train / single pulse...
See page 37.

Filter >

IIR Time Domain Filter
This menu allows filtering of the loaded sound file in time domain. Undesired disturbance signals can be removed. In contrast to FIR-filters, IIR-filters have an infinite impulse response because of their feedback structure. This causes a non-linear phase response. Different frequency components will be delayed differently. This is a remarkable drawback compared to the FIR-filters if best fidelity of the filtered signals is required. The advantage of IIR-filters is, that the execution time is shorter than in FIR-filters. You can choose between different types of filters:

Highpass
Removes signals below cut-off frequency.

Lowpass
Removes signals above cut-off frequency.

Notchfilter
Removes signals with the specified center frequency.

User-defined
The user defined IIR-Filter allows the realization of any filter response. The IIR-Filter consists of a free selectable number of biquads. The coefficients have to be defined in a "*.flt"-file. This file is divided into different sections. The section [main] contains the entry "order=" which determines the filter-order. The maximum order is 28. Note that only even numbers are valid because of the
biquad-structure. The entry "sampling_frequency=" determines the sampling frequency to be used with the following coefficients.
The next sections contain the filter-coefficients. All coefficients one biquad are listed within the sections [BIQUADx].

The ASCII-file for definition of the filter has the following structure: (see also the file demo.flt)

```
[main]
order=6
sampling_frequency=20.0
description=

[BIQUAD1]
a1=1.0
a2=-1.514
a3=0.5141
b1=-0.4303
b2=0.3788

[BIQUAD2]
a1=1.0
a2=1.1206
a3=0.2770
b1=-1.1663
b2=0.4186

[BIQUAD3]
a1=1.0
a2=0.0804
a3=0.4838
b2=0.0876
b1=0.5802
```

Half Band Decimation Filter
Halves the sampling frequency with the required anti-aliasing filtering.

The filter order of highpass, lowpass and band rejection filter can be selected. The 8-th order filters have a narrower transition between pass band and rejection band. The filter type can be selected for high pass and low pass filters. The following characteristics can be selected: *Chebyshef, Butterworth, Bessel* and *Critical Absorption*.

Impulse Response
This button shows the impulse response of the current filter settings in a separated curve window.
Step Response
This button shows the step response of the current filter settings in a separated curve window.

Frequency Response
This button shows the frequency response of the current filter settings in a separated curve window.
The cutoff frequencies can also be specified by the measuring cursors of the spectrogram or the curve window. To do this the filter-dialogue must be opened and the measuring cursors in the spectrogram or curve window have to be positioned to the desired location. The numeric value of the cursor is entered automatically into the filter dialogue.

FIR Time Domain Filter
This dialog allows filtering of the entire WAVE file using a Finite Impulse Response (FIR) filter. In contrast to IIR-filters, FIR-filters have a finite impulse response because of their non-feedback structure. This causes a linear phase response. Different frequency components will be delayed equally. This is a remarkable advantage over IIR-filters if best fidelity of the filtered signals is required. The disadvantage of FIR-filters is, that the execution time is longer than in IIR-filters. The following filter types are available:

Highpass
Removes the signal components below the specified cut-off frequency.

Lowpass
Removes the signal components above the specified cut-off frequency.

Bandpass
Transmits the signal components between the specified lower and upper cut-off frequency.

Bandstop
Removes the signal components between the specified lower and upper cut-off frequency.

User-defined
This option allows the selection of a predefined frequency response for FIR-filtering. The desired frequency response has to be defined in a "*.flf" -file. In this ASCII-file an unlimited number of coordinate pairs [frequency Hz] [factor] defines the desired frequency response. The frequency is specified in Hertz. The
corresponding amplification is a value between zero and one. The generation of this file can be done advantageous in spreadsheet software because the graphical display is supported in a very simple way.

The ASCII-file containing the definition of the frequency response has the following structure (see also the file demo.flf):

100 0,1
200 0,3
500 0,3
2000 0,8
4000 0,1
6000 0
20000 0

Alternatively, the attenuation can also be defined in dB units (the software will interpret the data set as logarithmic dB values as soon as there is at least one negative number or the maximum is not larger than 0.0).

The Edit button below allows editing the selected frequency response file graphically. A new frequency response can be created by specifying a new file name (extension .flf). In the appearing curve window the shape can be edited by mouse drawing. Existing points can be moved by left clicking and dragging them to a new location. A point can be removed by right clicking on it. The entire shape can be removed by the menu option Edit/Reset Shape of the curve window. New points are inserted by left clicking at the lines between points. In order to enter the modifications made in the curve window, the shape must be saved by the Save button of the Time Domain Filter (FIR) dialog box. The resulting frequency response is displayed then in the curve window.

Number of Taps
Here you can specify the number of coefficients (taps) used for the filter development. Many taps will give higher spectral selectivity. This means that the width of the transition between pass- and stop band becomes smaller. This is accompanied by a longer computing time.

Window Type
The FIR filter coefficients can be multiplied by a window function that is selectable here. This will reduce the ripple of the frequency response in both pass-band and stop-band. This is accompanied by a reduction of the spectral selectivity.

Coefficients
This list-box allows selecting user-defined FIR coefficients. These coefficients have to be saved before in a WAVE-sound file with the extension *.FIR. The file must be in 16-bit mono format. The maximum sample count (number of taps) of
this file is 2048. These coefficients represent the impulse response of the desired filter. Therefore this file could be generated by recording of the impulse response of a real system that is stimulated by a single impulse. In this case it may be necessary to re-scale the sound file to get the desired gain. The factor 1.0 is represented by the integer value 32767 in the *.FIR-file. The Coefficients must be inside the range from -1.0 to 1.0 (binary -32768 to 32767). In case the coefficients have been computed by an other filter development tool, they first have to be saved in an ASCII-file which can be imported into the Avisoft-SASLab using it's ASCII-import function (File/Import-Format). After data import of the ASCII file you have to save it with the extension *.FIR. Then you can select the *.FIR-file in this Coefficients list-box.

zero phase
This option performs zero-phase digital filtering by processing the data in both the forward and reverse directions. Note that the filter is applied twice, which means that the magnitude of the original filter transfer function will be squared.

keep DIO state
If activated, this option will preserve the DIO information (related to the UltraSoundGate hardware) that is located in the least significant bit of each sample. It should only be activated when the UltraSoundGate DIO track is being used.

take channel #
In multichannel files, this option determines, which channel will be filtered. In stereo files the left channel is channel # 1.

all channels
In multichannel files, this option will filter all channels at once.

Impulse Response
This button shows the impulse response of the current filter settings in a separated curve window.

Frequency Response
This button shows the frequency response of the current filter settings in a separated curve window.

The cut-off frequencies can also be specified by the measuring cursors of the spectrogram or the curve window. To do this the filter-dialogue must be opened and the measuring cursors in the spectrogram or curve window have to be positioned to the desired location. The numeric value of the cursor is entered automatically into the filter dialogue.
Frequency Domain Transformations (FFT)

This menu allows filtering of subsections of the loaded sound file in the frequency domain using FFT-technique. Before applying the filter, it is necessary to mark the desired section of the sound file to be filtered. The marked section is first transformed into the frequency domain. Filtering is done by multiplying the spectrum by the transfer function and then calculating the inverse Fourier transformation. The behavior of this filter type (in conjunction with phase response) is comparable to the FIR-filters.

Frequency Shift

The marked section is shifted in frequency by the specified value. Positive values result in increasing of the frequency, while negative values decrease the frequency. Note that this is an additive frequency shift. If there are harmonics of the fundamental in the signal, they will not be multiples of the fundamental after transformation.

Highpass

The marked section is high-pass filtered using the specified cut-off frequency. All signal components below the cut-off frequency will be removed.

Lowpass

The marked section is low-pass filtered using the specified cut-off frequency. All signal components above the cut-off frequency will be removed. The option 1/f will instead activate a special low-pass characteristic that applies an attenuation of 3 dB / octave (10 dB / decade) starting at the entered cut-off frequency. This option can be used to convert white noise (created via Edit/Synthesizer) into pink noise.

Bandpass

The marked section is band-pass filtered using the specified cut-off frequencies. All signal components below the lower cut-off frequency and above the higher cut-off frequency will be removed.

Bandrejection Filter

All signal components between the specified lower cut-off frequency and the higher cut-off frequency will be removed.

transition interval

This parameter determines the width of the transition interval between the pass- and stop band of the filter. Steep transitions can cause undesired ringing (oscillations at the corner frequencies). It is therefore recommended to enter a value larger than zero because smoother transitions will attenuate these ringing artifacts.
User-defined
This option allows to select a predefined frequency response for filtering the marked section.
The desired frequency response has to be defined in a "*.flf"-file. In this ASCII-file an unlimited number of coordinate pairs [frequency Hz] [factor] defines the desired frequency response. The frequency is specified in Hertz. The corresponding amplification is a value between zero and one. The generation of this file can be done advantageous in spreadsheet software because the graphical display is supported in a very simple way.
The ASCII-file containing the definition of the frequency response has the following structure (see also the file demo.flf):

```
100 0,1
200 0,3
500 0,3
1000 0,3
2000 0,8
3000 1
3500 1
4000 0,1
6000 0
20000 0
```

Alternatively, the attenuation can also be defined in dB units (the software will interpret the data set as logarithmic dB values as soon as there is at least one negative number or the maximum is not larger than 0.0).

The **Edit** button below allows editing the selected frequency response file graphically. A new frequency response can be created by specifying a new file name (extension .flf). In the appearing curve window the shape can be edited by mouse drawing. Existing points can be moved by left clicking and dragging them to a new location. A point can be removed by right clicking on it. The entire shape can be removed by the menu option **Edit/Reset Shape** of the curve window. New points are inserted by left clicking at the lines between points. In order to enter the modifications made in the curve window, the shape must be saved by the **Save** button of the Frequency Domain Transformation dialog box.

Phase Scrambling
The phase of the original signal will be replaced by a random phase. The resulting signal will exhibit the original (average) power spectrum, but its waveform will be a random noise signal.

The cut-off frequencies can also be specified by the measuring cursors of the spectrogram or the curve window. To do this the filter-dialogue must be opened and the measuring cursors in the spectrogram or curve window have to be positioned to the desired location. The numeric value of the cursor is entered automatically into the filter dialog box.
Noise Reduction

The Noise Reduction command removes noise below a user-defined threshold in the frequency domain. The sound file is converted step by step into the frequency domain (with the specified **FFT length**), where all frequency components below the threshold specified under **remove noise below** will be reduced by the amount specified under **reduce noise by**. The threshold **remove noise below** should be adapted to the level of the noise floor of the recording to be processed. Try several settings for optimal performance. Too low thresholds may not remove the noise floor completely. Too high thresholds will also remove parts of the signal.

The **precision** value determines the quality of the resulting sound file. Low values (below 4) will cause spikes at the margins of the FFT blocks. Large values will increase the processing time.

Please note, that this noise reduction algorithm will only improve the subjective quality of recordings. The true signal-to-noise ratio will not be increased, which means that soft signals close to the noise floor will be removed too. So, it is strongly recommended to take care that the noise floor is kept as small as possible during recording (using low-noise microphones and amplifiers, microphone wind shields, short distance between sound source and microphone, ...).
Format >

Stereo->Mono
Stereo or multi-channel sound files are converted to a mono file. The take channel # list box determines which channel is copied into the resulting mono file. If the add channels option is checked, all channels will be mixed together. If the subtract channels option is checked, the right channel will be subtracted from the left channel.

8<-->16Bit Conversion
This option executes a file-format conversion from 8 to 16 Bits if the source file is an 8-Bit file. A 16 to 8 Bit conversion is done if the source file is in 16-Bit format. In order to exploit the limited dynamic range of an 8-bit file, the source file is normalized and any offset is removed.

Change Fileheader Sampling Frequency / Time Expansion
This menu allows changing the sampling frequency stored in the sound file. Additionally a time expansion factor can be specified. This factor is multiplied with the sampling frequency of the sound file for display scaling. This is useful for the analysis of bat ultrasound calls recorded by a bat detector or a high-speed recorder (time expansion technique). Because a sound-card can only process sounds up to 22kHz you have to slow down the playback speed of the ultrasound signals, so that they will be transformed to the frequency range of the sound card. If you have slowed down the playback speed by the factor 10 you have to check the 10:1 option. Please note, that the time expansion factor does not influence the playback speed of the sound file.

The resulting sampling frequency, which is used for scaling of the time and frequency axis of spectrograms, spectra and waveforms are shown at the bottom of the dialog box.

Sampling frequency conversion...
This menu allows changing the sampling frequency of the sound file. In contrast to the Change file sampling frequency option, this option will resample the data stored in the sound file. In other words, the pitch of the signals in the file will be unaffected. Please note, that not all sampling frequencies listed in the ‘to’ combo box are supported by all soundcards. You may also input any other value not listed in that box. Both down- and up-sampling are supported. In down-sampling antialiasing filtering may be necessary. Check the ‘Perform Antialiasing Filtering’ checkbox if (time-consuming) low pass filtering is required. The ‘Accuracy‘ box determines the quality of the re-sampling process. Low values will result in fast execution, but may cause some distortion. High values will produce high quality
re-sampling at lower speed. Every time the Accuracy value has changed (and at the first time you use the Sampling frequency conversion option), an additional setup procedure will be executed within several seconds.

The option ‘keep DIO state’ will preserve the DIO information (related to the UltraSoundGate hardware) that is located in the least significant bit of each sample. It should only be activated when the UltraSoundGate DIO track is being used.

The execution speed of the down-sampling procedure (current sampling frequency is higher than the desired rate) depends on the ratio between the current and desired sampling frequency. If that ratio is integer (e.g. 44.1 to 22.05), the down-sampling procedure will be very fast. In all other cases a special time-consuming re-sampling procedure will be executed.

Restore the original time scale of a time-expanded recording

This command can be used to restore the original time and frequency scale of time-expanded recordings that were made with time-expansion bat detectors. The sample rate attribute of the of the sound file header will be multiplied by the entered *Time expansion* factor and permanently saved back into the file header.

If the option *Perform subsequent Sample Rate Conversion* is activated, the sound file will be finally re-sampled to a new sample rate (specified in the field labeled *to:* in order to adjust it according to the requirements of specific playback devices for instance.

If the output signal of the time expansion bat detector was recorded onto a digital audio recorder at a sample rate of 44.1 kHz and the time expansion factor of the bat detector was 10:1, the resulting sample rate would be 441000 Hz (which is displayed on the field *Convert from:*). If it is desired to play the resulting file through a playback device that does not support this unusual sample rate (such as the UltraSoundGate Player products), it can be re-sampled for instance to 300000 or 500000 Hz.

Time/Pitch Conversion

This menu allows to change the speed and pitch of the sound file. The data stored in the sound file will be re-sampled without changing the sampling frequency. The time scale is multiplied by the specified time scale factor. In other words, the file size (duration) is multiplied by this factor. If the factor is greater than 1.0, the file will be time-expanded (pitch decreased). If the factor is less than 1.0, the file will
be reduced (pitch increased). In down-sampling (factor<1.0) antialiasing filtering may be necessary. Check the ‘Perform Antialiasing Filtering’ checkbox if (more time-consuming) low pass filtering is required. The ‘Accuracy’ box determines the quality of the re-sampling process. Low values will result in fast execution, but may cause some distortion. High values will produce high quality re-sampling at lower speed. Every time the Accuracy value has changed (and at the first time you use the Time/Pitch conversion option), an additional setup procedure will be executed within several seconds.
Tools

Zoom

After loading a sound file or after finishing recording, the whole sound file is displayed inside the main window as an envelope curve (waveform). To zoom into a section of the file you can use this option. After activating this menu the cursor changes into a vertical arrow. Now you can point to the start point of the desired section and drag the cursor to the desired end point. After releasing the mouse bottom this section is displayed over the whole window.

Alternatively, zooming can be done by double-clicking at a previously marked section.

The section visible in the window can be moved through the file by clicking on the scroll bar at the bottom of the window. To display the whole file again, choose the menu "Tools/Unzoom" or the button . The previous view can be retrieved by the menu "Tools/ZoomPrevious".

Unzoom
The whole sound file is displayed inside the main window.

Zoom Previous
This option retrieves the most recent views of the sound file.

ZoomIn
Zooms into the waveform by factor two.

ZoomOut
Zooms out of the waveform by factor two.

Remove Marker
This option removes the current marker.

Set Marker Duration
This menu allows adjusting the marker duration in the main windows by hand. The duration is expected in the edit field "dt" in seconds. This option should be used if a precisely defined marker duration is required. This could be useful if you need several spectrograms with equal lengths.
Copy Measurement values t1, t2
Copies the time measurement values t1 and t2 into the clipboard. Additionally the data set can be transferred to other Windows applications by DDE (Dynamic Data Exchange) or it can be stored into an ASCII-log-file. This has to be specified with the menu "File/DDE Parameters / Log-File.

Cursor linkage between Instances…
This dialog allows to define cursor linkages between different instances of the SASLab Pro software. See page 157 for details.

Labels >

Insert label
See page 162.

Insert section label
See page 162.

Insert section label from marker
See page 162.

Create section labels from waveform events
This command locates sound events within the waveform representation and creates section labels for each detected event. The event detection is based on a simple threshold comparison on the rectified waveform.

The threshold value can be edited from the threshold edit field, which is expected in absolute units (V or Pa). The corresponding relative threshold (referenced to full scale) is displayed in brackets. The threshold should be set to a level significantly higher than the noise floor. The Pulse Train Analysys command can be used to select the threshold graphically on the envelope display (the Pulse Train Analysis threshold is identical to this threshold).

The hold time and margin parameters determine how the section labels are arranged. Successive events (threshold exceeding) that are closer spaced than the hold time or margin parameter will be assigned to the same label. Entering a margin value greater than zero can further dilate the labels. While the hold time parameter should always be larger than zero (at least larger than a period of the
sound waves), the *margin* can be zero. The following examples illustrate the influence of these parameters:

- **hold time = 0.005 s, margin = 0 s, threshold = 0.2V**

- **hold time = 0.05 s, margin = 0 s, threshold = 0.2V**

- **hold time = 0.05 s, margin = 0.03 s, threshold = 0.2V**

The option *asymmetric margins* allows defining different margins for the start and end of the event.

The option *exclude overloaded (saturated) events* will ignore events that exhibit an overload condition. The overload threshold can be set from the command “File”/“Sound Card Settings…”

The *layer* list box determines to which layer the section labels will be assigned.
If the **label offset #** option is activated, the starting number that will be assigned to the first detected event can be entered. Otherwise, the first detected element will receive the number “1”.

If the **delete all previous labels** option is activated, then all labels that already exist will be deleted. Otherwise, the labels will be added to the existing ones.

The **take channel #** list box selects the channel from which the events are detected.

Create labels from UltraSoundGate DI
The UltraSoundGate hardware provides a digital input channel, which is located in the least bit (bit 0) of the 16-bit PCM word. This command allows creating labels derived from that digital input channel. The signal fed into the digital input is assumed to be active-low.

Label placement
It can be selected one of the following locations:

- **start of pulse** : The label is placed at the start of the pulse (falling edge of the low-active signal).
- **end of pulse** : The label is placed at the end of the pulse (rising edge of the low-active signal).
- **section** : A section label representing the entire low-active pulse is created.
- **section inverted** : A section label representing the entire high-active pulse is created.

pulse interval > In case the digital signal represents the state of a mechanic switch, this time parameter can prevent recognizing faulty pulses (mechanic switches sometimes produce several close-spaced pulses when being pressed). If this is not a problem, this parameter can be set to zero. Otherwise, this parameter should be set to a value that is smaller than the expected pulse rate (for manual switches 10 ms would be appropriate).

Label text
- **string** : The specified string is assigned to the text label.
- **index** : The index of the label (starting with one) is appended.
- **duration** : The duration (for sections) or time stamp of the label is used as label text.

delete all previous labels : If this option is activated, all existing labels will be deleted.

take channel# : In multi-channel files, this list-box allows to select the channel from which the digital signal is taken.
Create sidecar .txt file instead of labels: If activated, this option will instead save the results in a separate .txt file.

Georeference labels / .wav files

This command looks up the geographic coordinates of the labels that have been added to a sound file that was recorded by the Avisoft-RECORDER software. In field survey applications, it is for instance possible to display the identified species on a map.

If there are no labels stored in the .wav file, the program can instead use different identifiers that apply to the entire .wav file. The available options can be selected from the list box titled “if there are no labels use xxx as identifier”:

- **filename prefix:** The program searches for filename prefixes (separated by space or underline characters such as ‘Ppip T0001.wav’) that have been created for instance by using the command File/Rename and will use these strings as species references.
- **dXML field:** A specific dXML data field (for instance “species”) is being used as an identifier for the waypoints to be created. The corresponding name of the dXML field must then be entered.
- **Fixed string:** A fixed user-defined string is being used as identifier for the waypoints.

This option can be used for batch processing of (short) stationary files.

The GPS time stamp information that is saved in the recorded .wav files is used to look up the geographic coordinates from a .gpx or NMEA tracklog file (note that .kml tracklog files no not work because they do not contain the required time stamps). Alternatively, the UTC start time of the sound file can be entered manually. The results containing the label name, the associated coordinates and the time stamp can be saved into a .gpx, .kml, .shp or .txt file.

Input

GPS Waypoint / Tracklog File (.gpx, .kml, tcx or NMEA .txt)

Select here the tracklog file from which the time stamps and GPS coordinates should be taken. Supported file formats are the GPS exchange format (.gpx), Google Earth (.kml with MultiTrack entries), Gamin Trainings Center (.tcx) and NMEA 0183 formatted text log files (.txt). This would be normally the continuous tracklog file created by the RECORDER software (Options / GPS Settings… > ‘continuous tracklog while monitoring’).
individual .gpx file for each .wav file (or no tracklog file)
If the RECORDER software was configured to create individual log files for each .wav file and the ‘.wav file tracklog’ option was activated, it is possible to use the tracklog information from these individual files by activating this option.
Stationary sound files (that were recorded at a fixed place) do not require a separate tracklog file because the fixed GPS coordinates will be taken directly from the .wav file header (activate the option individual .gpx file for each .wav file (or no tracklog file) in this case).
.wav file UTC start time
This edit field should display the UTC start time that is stored in the file header of the .wav file. This information is saved by the RECORDER software, version 3.4, dated 14 January 2009 or later. If the UTC start time stamp is not available, it is also possible to enter that time manually (format: ‘yyyy-mm-ddThh:mm:ssZ’).

Output Waypoint File
Enter here the destination .gpx, .kml, .shp or .txt file name into which the results should be written. The .gpx, .kml and .shp format options comply with the industry standard and can be viewed in various GIS applications. The .txt format is a simple TAB-delimited ASCII table that contains the label names, the time stamps and the geographic coordinates.
This command can also be executed on several sound files at once by using the associated batch command option (Tools/Batch processing…).

export the full pathname of the .wav files
If this option is activated, the complete local pathnames of the .wav files will be added to the resulting output file (only available with .kml files).

add HTML links pointing to the .wav files
This edit field allows to replace the original (local) pathname of the .wav files in the resulting .kml file by a user-defined URL, which can simplify publishing results on Google Maps for instance. Note that the pathnames could also be replaced afterwards in a word processor application.

launch GIS application
If activated, the program will run the specified GIS (Geographic Information System) application with the resulting .gpx/.kml file as a command line argument. One possible program would be GoogleEarth, which can (in the current version 5.1) however only open .kml files as a command line argument. .gpx files must be instead opened separately.

Delete all labels
This command will delete all labels.
Filter labels

The Filter labels command allows removing labels based on their label text strings. There are generally two ways for selecting the labels to be removed which can be selected from the combo box at the top of the dialog box:

keep the selected labels : This option will keep the labels that have been selected on the list box below.
remove the selected labels : This option will delete the labels that have been selected on the list box below.

Click at OK to execute the removal of the labels. In order to be able to undo the filter operation, the wav file should be saved before this command is executed.

(Re-)Number labels

Sorts the labels by time and replaces the label text by a running number.

Label settings...

See page 162.

Import section labels from .txt file...
Imports section labels from a common .txt file. The expected format of the .txt file is as follows:

```
Start [s]  end [s]  optional label text
--------------------------------------------------------------
43.2364  43.2473
63.1097  3.1193  section a
65.02916  5.0387
--------------------------------------------------------------
```

Import time-frequency labels from .txt file...
Imports time-frequency labels from a common .txt file. The expected format of the .txt file is as follows:

```
Time [s]  frequency [Hz]  optional label text
--------------------------------------------------
43.2364  4000
63.1097  5000  start
65.02916  6000
--------------------------------------------------
```
Export labels into .txt file…
Exports (section) labels into a common .txt file. The format of the resulting .txt file is compatible with the above commands Import section labels from .txt file… and Import time-frequency labels from .txt file…

Label statistics…
See page 164.

Export label data

There are two export Format options:

binary time series

This option exports the labels as ASCII-formatted binary time series either via the clipboard (Copy button) or as a text file (Save… button). The temporal resolution of the time series can be specified in the corresponding edit field. The resulting sample frequency is displayed below. The labeled sections are represented as “1”. The remaining segments between them are “0”. CR/LF characters separate the subsequent binary samples.

time / frequency stamps

The time and frequency stamps of the labels will be exported as an ASCII table. The individual label coordinates are separated by tabulators.

Insert CR/LF : In order to separate related measurements (belonging to a syllable or song), it is possible to insert new line control characters (CR/LF) depending on the selected option:

if label text equal to `'.'
If there is a dot (period) in a label text, a CR/LF will be inserted and the next label will be on the next row. In this way it is possible to group subsequent labels (e.g. for exporting frequency contours of subsequent sound elements). The spectrogram window command Tools/Automatic Parameter measurements/Copy peak frequencies into labels will create the dot delimiters for the last sample of each element automatically.

after each label
A new line will be inserted after each label.

if label text is not empty
A new line will be inserted if there is any label text
if interval > threshold
A new line will be inserted if the time interval between the current and the preceding label is larger than the specified threshold.

Add label text
If activated, the label text string will be exported as well.

Save labeled sections into numbered .wav files

This command saves each of the currently selected label sections of the sound file into separate numbered .wav files. The destination folder for the files to be saved can be entered either directly into the *Destination directory* field or via the Select Directory button. The option “Add the filename of the original .wav file” will include the filename of the original .wav file as a filename prefix for the numbered .wav file output. Use the option “Add the label texts to the filenames” in order to retain the label text information. The option “Reject file numbers” will exclude the default running number from the filename. If you use that option make sure that the all label texts are unique (otherwise, files will be overwritten). The “Digits” list box determines the number of digits used for formatting the file number. Make sure that there are sufficient digits for covering the maximum number of labels. The “Margin” value specifies the margin that is added at both start and end of each section label.

Save labeled sections into a single .wav file...

This command saves the concatenation of the selected sections of the sound file (selected by section labels) as a new (single) .wav file.

Save labeled sections of same class into single .wav files...

This command saves the concatenation of the selected sections of the sound file (selected by section labels) as a new (single) .wav files. Each label class (defined by the label text) will be saved into a separate file. In case the destination files already exist, the new data will be appended to the existing ones.

Classify labeled sections

Labeled elements can be classified either by means of a spectrogram cross-correlation procedure (option Spectrogram Templates) or by means of a
frequency contour comparison that employs a least mean square criterion (option Frequency Contour Templates).

Spectrogram Templates

This classification option allows identifying syllables by using spectrogram cross-correlation. A user-defined set of template spectrograms is compared with each of the labeled sections in a soundfile (the sound event labeling can be done either manually or automatically (see page 94). The comparison is done by a two-dimensional spectrogram cross-correlation. The name of the template spectrogram that provides the maximum correlation coefficient (the highest degree of similarity) is considered as the class membership of the unknown syllable. An additional threshold comparison on the cross correlation coefficient allows to increase the reliability of the results. If none of the template spectrograms provides a correlation coefficient that is larger than that user-defined threshold, the sound event will be labeled as unidentified.

The template spectrograms that have previously been saved from the spectrogram window command “File”/"Save Spectrogram (ASCII/Binary)...” as .son files can be selected from the **Select** button or simply by drag-and-drop. The launched File Open dialog allows to select several files at once (by using the <Shift> or <Crtl> keys). All template spectrograms must reside in the same folder. The templates must have been created with corresponding spectrogram parameters (same FFT length, frame size, overlap, samplerate). Also, the sample rate of the sound file to be examined must correspond to the sample rate at which the template spectrograms have been created. If the option **use all template files in the selected folder** is activated, all the .son files in the selected folder will be used as templates.

In order to reject low-frequency noise that might disturb the correlation procedure, a **high-pass cutoff frequency** can be specified. All spectrogram components below that frequency will be ignored. Accordingly, the **low-pass cutoff frequency** setting will exclude any signal components above the specified frequency.

For tolerating slight frequency deviations between the templates and the unknown sounds, a **max frequency deviation** can be specified. Depending on the frequency resolution of the template spectrograms and the specified maximum deviation, the cross-correlation will be repeated for various frequency shifts. The maximum correlation coefficient is taken as the similarity score. The cross-correlation algorithm is similar to that of the Avisoft-CORRELATOR application (see page 235).
The identification threshold determines the rejection of poor identification results. This threshold is applied directly to the cross-correlation coefficients. Any sound event that only provides coefficients below that threshold will be regarded as unidentified ("?"). Higher thresholds will provide more reliable classification results. However, slight deviations between the template and the sound under question might also prevent the proper recognition of class memberships. Adding more templates that cover as much variations as possible can compensate this problem. In order to get unified class names for all variations, the filenames of the spectrogram templates (.son) that should belong to the same class must start with identical names. The unified class names must be separated from the rest of the filename by either a dot (.) or an underscore (_). The following set of templates would create two classes only (e1 and e2). e1_v1 and e1_v2 represent variations that refer to the same class.

```
e1_v1.son
e1_v2.son
e2_v1.son
e2_v2.con
```

The option create automatic classes will perform a cluster analysis in such a way that new templates are being created automatically each time the identification threshold is not exceeded with the current set of templates. In this mode of operation, it is not required (but it is still possible) to define template files manually because they can all be created automatically. The template files will then be saved by default into the Avisoft Bioacoustics documents folder or alternatively into the manually specified folder (simply drag the desired folder into the Classification Settings dialog box). The button Delete old c*.son files will delete any automatically created .son template files that are present in the current template folder.

The results of the classification procedure can be assigned directly to the underlying section labels. The option replace label texts with class names is responsible for these assignments. The section labels of unidentified (?) elements can be removed by activating the option remove unidentified sections. The option keep text of unidentified labels will preserve the original label text in case it could not be identified (otherwise the label will receive the ‘?’ character). The option ignore labels with text string (except ‘?’ and numbers) will exclude those labeled sections that already have a text string with at least one letter in it (only labels with text strings such as ‘?’ , ‘1’ or ‘189’ will be processed and labels with strings such as ‘e1’ or ‘species a’ will be excluded from the classification procedure.
Due to the frame-based generation of the spectrograms, there will be (depending on the selected FFT length) short missing intervals at the beginning and end of each label. This effect can be compensated by activating the option **compensate for FFT window size**, which will extend the boundaries of the created spectrogram (by shifting the start and end positions appropriately). The related **zero padding** option will set these margins \((\text{FFT length} / 2)\) to zero in order to prevent potential overlapping with adjacent sounds.

In case multiple templates have been defined for each class, the option **classify based on averaged correlation values will** perform the classification based on the maximum average correlation coefficient of all templates belonging to each class.

The option **max duration difference between template and section label** allows to limit the template comparison to templates having a duration similar to the duration of the section label to be examined. This can help prevent miss-classifications due to high correlation values between long complex sound elements that would otherwise produce high correlation values when compared to short and less complex templates. The maximum duration difference threshold [unit \(\text{ms}\)] should be selected according to the typical durations. In order to make it work, it is necessary that the total duration of each template spectrogram reflects the duration of the sound element in it (there should be uniform margins) and that the section labels to be examined exhibit margins similar to those in the templates.

The section label layer list box determines which labels will be used for the classification procedure.

Frequency Contour Templates

This classification method compares the frequency contours of the labeled sections with template frequency contours. The similarity between the labeled sections and the templates is determined by calculating least mean squares. The frequency contour templates are defined by .ft files that can be created by the Graphic Synthesizer module (the command **File/Save As**… saves .ft files that are part of an arrangement (.ARR)). The frequency contours itself can be created either manually in the Graphic Synthesizer by mouse-drawing or they can be derived from spectrograms (spectrogram window command **Tools/Scan frequency contour an and amplitude envelope**…). The frequency contours of the labeled sections are determined by searching the peak frequencies on the spectrogram, which means that this kind of classification will only work for whistle-like vocalizations that exhibit clear frequency contours. The advantages of this method are that the calculation of the similarity score is fast and that the time scale can be varied by applying the time warping option.
The final classification is done by calculating the root mean square of the frequency differences between the two contours. This means that the marked section receives the class name of the template that provides the minimum overall frequency deviation. In case the durations of the template and the detected call differ by more than a predefined percentage (as specified in the \pm xxx % field on the section titled “duration”), then this detected call will be skipped. The option “normalize duration” aligns the time scales of the templates before the similarity score is calculated. The option “time warping” will repeat the correlation at different time scales.

The option **Filter Classification Results** allows to pick out a single class out of the classified labels (by deleting all section labels that have been assigned to other classes). The **take class** list box selects the desired class. The option **replace label texts with index** will assign the running index to the filtered labels. The labeled sections that

The **Default** button will set all parameters to their default settings.

The classification procedure is initiated by clicking at the **Start** button. A new classification window will appear:

Classification Report

The Classification Report panel indicates the progress and the results of the classification procedure. The report table lists the calculated correlation coefficients, the assigned class names and time stamps of each section label. The running classification can be prematurely canceled by clicking at the **Cancel** button.

Revise thresholds (only available on the command “Scan for template spectrogram patterns”) allows to repeat the final classification with a modified identification threshold and masking interval without executing the time-consuming cross correlation procedure again.

Show CCF traces (only available on the command “Scan for template spectrogram patterns”) displays the cross-correlation traces of the template comparisons.
The class / cnt table lists the total number of events that have been assigned to each class. The buttons Save stat and Copy stat export the class / cnt information.

The buttons Save table and Copy table export the detailed classification report table.

Use the batch command (Tools/Batch processing…) for processing several sound files at once.

Detect and Classify waveform events
This command combines the two commands Create section labels from waveform events (see page 94) and Classify labeled sections (see page 101).

Classify Element Sequences

The Element Sequence Classifier facilitates identifying user-defined label (element) patterns. The list box at the top of the dialog box represents the defined sequence classes. Each sequence class is identified by its class name. The label sequence is defined by enumerating the individual label texts (separated by space characters) in the sequence field.

class name: Enter here the name of the class.

delete: Removes the selected class.

new: Adds a new class.
< : Moves to the previous class.
> : Moves to the next class.

sequence : Enter here the label texts in the desired order. The individual labels must be separated by space characters.

It is possible to insert optional interval and/or break limits between the labels that override the corresponding limits defined in the *general settings* section. The optional temporal limits must be separated by space characters and must have the following format:

- `i>ddd.d`d
- `i<ddd.d`d
- `b>ddd.d`d
- `b<ddd.d`d

The unit of the duration parameter `ddd.d`d is milliseconds.

For example the sequence string “`class1 b>100 b<200 class2 class3`” defines a sequence of 3 elements class1, class2 and class3. The duration of the break between class1 and class2 should be larger than 100 ms and shorter than 200ms. The break between class2 and class3 is as defined on the general settings > break between elements.

loop : The loop option defines a sequence that repeats itself several times.

Reset : Removes all class definitions and returns to the default class definition file seq_classes.scs.

general settings : The general setting section defines additional constraints on the defined class by limiting the range of a number of parameters. Leaving the corresponding edit fields empty will ignore the parameter.

element interval : The duration from the start of the previous label to the start of the current label. These interval limits can be overridden by the `i>ddd.d`d and `i<ddd.d`d options as described above.

break between elements : The duration from the end of the previous label to the start of the current label. Use the upper limit of this parameter in order to separate consecutive groups of elements (strophes). These break limits can be overridden by the `b>ddd.d`d and `b<ddd.d`d options as described above.
total number of elements: The total number of labels in the entire sequence. These limits only apply if the *loop* option has been activated.

total group duration: The duration from the start of the first label to the end of the last label of the sequence.

average element rate: The number of elements per seconds on the entire sequence.

copy!: Copies the settings from the currently selected class to all other classes.

default!: Resets the select class settings and sets the maximum *break between elements* to 500 ms in order to separate consecutive strophes.

reset!: Resets the select class settings.

delete the original labels: If activated, the original labels (single point labels or section labels on *layer 1*) will be deleted. It is recommended to disable this option while optimizing the settings.

Start / OK: Clicking at the *Start* button will execute the classification procedure. The identified sequences will be marked by section labels on *layer 2* (or *layer 1* in case the above option “*delete the original labels*” is activated) and will be enumerated in the listbox at the bottom of the dialog box.

Cancel / Close: Terminates the dialog box.

SaveAs…: Saves the element sequence class definition in a new *.scs* configuration file.

Open…: Opens a previously saved *.scs* file. Alternatively, existing *.scs* files can be opened by drag&drop.

This command can be executed also in a batch process (*Tools / Batch processing… > Classify Element Sequences*).

Section label grid…
See page 162.

DDE parameters / Log-file…
See page 139.

Touch Screen Optimizations

This dialog box allows adjusting a number of settings that improve the operation of the graphic interface of the software on a touch screen. Note that this dialog box can also be launched on the SASLab start screen with the Avisoft logo by left-clicking (or touching) the area with the frame.
apply these settings
If activated, the following settings will be applied. Otherwise, the graphic interface will work in the conventional mode for mouse-based control. Use this option to quickly switch between touch and mouse control.

button size: Selects the desired enlargement of the buttons.

snap distance: Selects the snap distance for managing cursors.

push scrolling: Enables the push scrolling mode that continues scrolling after releasing the touch screen (or mouse button) depending on the speed of the push movement and the selected **friction** setting. A friction setting of 0 will scroll endlessly until the end of the file is reached or the user stops the scrolling by touching or left-clicking at the display. Higher friction values will continuously slow down the speed down to zero. The **update rate** determines how often the display is being updated. High rates (25 fps) will provide a smoother scrolling but at the same time create a higher processor load.

scroll mode: Activates the scroll mode at which the entire waveform and spectrogram display area can be used to scroll (pan) through the sound file. Otherwise, that area will be sensitive to inserting markers and moving cursors.

display large scroll mode / control buttons: Launches large buttons for controlling the touch screen functionality (scroll mode and optionally the shift and right-click emulation).

emulate shift key / right-click: Displays buttons for emulating the shift key and right-click mouse control functionality on the SASLab software when the **Scroll Mode** is not activated:

The **Shift Key** button represents the shift key on the keyboard, which allows inserting labels that would normally require to press the shift key on the keyboard.

The **Right-Click** option will translate a left-click (a touch) into a right-click in order to facilitate entering label texts for instance.

auto reset: The auto reset option determines the behavior of the **shift key** and **right-click** emulation. If activated, both the **shift key** and **right-click buttons** will be deactivated once an action has been executed. That way, the **shift key** and **right-click** emulation will only be applied temporarily for the next touch. Otherwise, these options will remain active until the corresponding keys are deactivated manually.
previous/next file command functionality: If activated, the scroll mode will move to the previous or next file (according to the settings defined in File>Specials>Previous/Next file command settings...) once (in a zoomed view) either the start or the end of the WAB file has been reached and the user tries to move further. If the entire file is being displayed, the command will be executed once the touch screen is released near the margins of the program window (similar to the common tablet gesture).

When using the software on a tablet PC with touch screen (without a stylus) it is generally recommend to enlarge the text and the items from the Windows Control Panel > Display. Similarly, the file icons on the Explorer window and File Open dialog box should also be enlarged (“Medium” or “Large Icons”).

Calibration

The Calibration dialog box allows calibrating a sound file or the recording equipment for absolute or voltage level or sound level measurements.

The calibration is basically achieved by determining the absolute measurement range (full-scale range) of the recording equipment at a certain gain setting. The full-scale range is defined as the maximum level of a sine wave that can be recorded without clipping.

In case the absolute full-scale range is already known, it can be entered directly into the corresponding edit field and no further action would be required. If this is not the case, the measurement range must be determined by recording a reference signal whose absolute level is known.

Depending on the available information on the full-scale range and the microphone (or hydrophone) sensitivity and the purpose of the measurements, one can select the desired calibration method from the **Method** list box at the top of the dialog box. The following options are available:
No calibration (re 0 dB FS)
This option represents the uncalibrated state, where all measurements within in the SASLab Pro software are referenced to a default voltage level of 1V on linear measurement scales and 0 dBFS on logarithmic measurement scales. This means that all dB measurements will be negative values. A full-scale sine signal corresponds to a level of -3dBFS and a full-scale square signal would correspond to a level of 0 dBFS. This is the default setting for applications that do not require absolute sound level measurements.

Voltage level measurements
This option is intended for absolute voltage level measurements. The full-scale range can be entered in various units that can be selected from the associated list box (see below). The gain field allows to specify any additional gain of the recording equipment. The effective range including the specified gain is displayed behind the gain selection field. If the full-scale range is unknown, it can be determined by recording a reference signal whose voltage level is known (see section Reference Signal).

SPL with calibrated phone
This option is intended for absolute sound pressure level (SPL) measurements, where the sensitivity of the microphone (mV/Pa) or hydrophone (dB re 1V/µPa) is known. In order to determine the full-scale SPL, it is required to know the full-scale input voltage range of the recording equipment, which can be entered in various units that can be selected from the associated list box (see below). The gain field allows to specify any additional gain of the recording equipment. The effective range including the specified gain is displayed behind the gain selection field. If the full-scale range is unknown, it can be determined by recording a reference signal whose voltage level is known (see section Reference Signal). SPL measurements require to select the correct reference SPL, which is 20 µPa for measurements in air and 1 µPa in water.

SPL with reference sound
This option is intended for sound pressure level (SPL) measurements were a known reference sound source is available or where the full-scale range of the recording equipment [expressed in Pa or dB(SPL)] is already known. The gain field allows to specify any additional gain of the recording equipment. The effective range including the specified gain is displayed behind the gain selection field. If the full-scale SPL range is unknown, it can be determined by selecting a reference signal whose sound pressure level is known. For doing this, the recorded
reference signal must be selected on the SASLab Pro main window by using the marker cursor (see also section **Reference Signal**).

full-scale range
The full-scale range corresponds to the voltage or sound pressure level that just does not cause clipping on the sound file. It is also referred to as measurement range.

/ **gain [dB]**
The gain field allows to specify additional gain settings that have been selected on the recording hardware.

Voltage level measurement units

Absolute voltages can be specified in various units:
Vp : peak voltage
Vpp : peak-to-peak voltage
Vrms : root mean square voltage
dBV : logarithmic expression of the above root mean square voltage, referenced to a voltage level of 1Vrms.
dBu : logarithmic expression of the root mean square voltage, referenced to a rms voltage level of 0.775 Vrms.

For a sine wave signal, the different units can be converted as follows:
1 Vrms = 1.414 Vp = 2.828 Vpp = 0 dBV = 2.2 dBu

In multichannel files, it is possible to calibrate each channel individually by selecting the individual channels from the **channel #** list box and specifying the associated full-scale ranges. If it is not required to calibrate each channel separately (in case all channels were uniform), the calibration executed on one channel can be automatically transferred to all other channels by activating the option “**Apply the calibration of this channel to all other channels**”.

If the “**option apply the calibration of this channel to all other channels**” is activated, the specified calibration will be applied to all channels of the sound file. Otherwise, the individual channels can be calibrated individually.

Reference Signal
This section allows to determine the full-scale range based on a reference signal that has already been recorded into a sound file. To execute this kind of calibration, the previously recorded reference signal must be selected on the SASLab Pro main
window by using the marker cursor and the level of that signal must be specified in the **level** field.

The calibration method “**SPL with reference sound**” allows to specify the SPL of the reference signal either in Pa or dB(SPL). The SPL is usually being measured by the “**root mean square**” (rms) method. For special applications, the option “**allow peak level measurements**” will allow to select also the peak or peak-to-peak amplitude methods for that.

The other calibration methods require to enter a reference voltage level. The measurement method for this reference voltage can be one of the following: **peak (Vp)**, **peak-to-peak (Vpp)** or **root mean square** (rms). The rms option allows to specify the rms voltage level either in Vrms, dBV or dBu units. After specifying the reference signal and selecting the reference signal within the sound file, the **Calibrate!** button must be clicked in order to finally calculate the full-scale range based on the entered reference level and the relative marked reference signal in the .wav file. As a result, the full-scale range at the top of the dialog box will be updated. Note that the **Calibrate!** button will always reset the **gain** setting to 0dB. The button **Calibrate all channels!** will perform the calibration procedure (individually) for all channels at once. This requires however that the reference signal has been recorded simultaneously onto all channels (the marked section must on all channels contain the reference signal).

Update!
The Update button can be used to update the full-scale range and SPL displays after the gain or microphone/hydrophone sensitivity has been modified.
Batch processing

Batch processing allows executing a function on several sound-files at once. The following functions are available:

Print multiple line spectrogram
A spectrogram is generated and printed as a multiple line image.

Print single line spectrogram
A spectrogram is generated and printed as a single line image.

Save multiple line spectrogram
A spectrogram is generated and saved as a multiple line image. The filenames of the graphics files will be derived from the names of the sound files. The extension .WAV will be replaced by .WMF, .TIF and .BMP.

Save single line spectrogram
A spectrogram is generated and saved as a single line image. The filenames of the graphics files will be derived from the names of the sound files. The extension .WAV will be replaced by .WMF, .TIF and .BMP.

IIR-filter
Each sound file will be filtered using the parameters defined in the menu Edit’/”Filter”/” Time domain IIR filter”. The original sound files will be replaced by the output of the filtering process.

FIR-filter
Each sound file will be filtered using the parameters defined in the menu ”Edit”/”Filter”/”Time domain FIR filter”. The original sound files will be replaced by the output of the filtering process.

Frequency Domain Transformation
Each sound file will be filtered using the parameters defined in the menu ”Edit”/”Filter”/” Frequency Domain Transformation…”. The original sound files will be replaced by the output of the filtering process.

Save one-dimensional transformation (WMF)
The function selected in the menu ”Analyze”/”One-dimensional transformation” will be executed on the sound files. The results will be saved as a WMF-graphics file. The filenames of the graphics files will be derived from the names of the sound files. The extension .WAV will be replaced by .WMF.
Save one-dimensional transformation (ASCII)
The function selected in the menu ”Analyze”/”One-dimensional transformation” will be executed on the sound files. The results will be saved into separate ASCII files. The filenames of the ASCII files will be derived from the names of the sound files. The extension .WAV will be replaced by .TXT.

Save one-dimensional transformations into a single ASCII file
The function selected in the menu ”Analyze”/”One-dimensional transformation” will be executed on the selected sound files and the data will be saved in a single ASCII file. In case one of the spectral functions has been selected and the Spectral Characteristics tool is activated, then these spectral characteristics measurements will be saved rather than the underlying spectral data set. The resulting text file will be saved into the same directory as the selected sound files and it’s filename will be derived from the name of the selected one-dimensional transformation (e.g. “Envelope.txt”). If the option “Tools” / ”DDEParameters / LOG file” : “Enable Dynamic Data Exchange” has been activated and an Excel worksheet is open, the results will also be transferred into that Excel worksheet.

Save mean spectra into a single ASCII file
A spectrogram will be calculated by using the parameters selected from “Analyze”/”Spectrogram Parameters…” and the mean spectrum of the entire spectrogram (sound file) will be saved into a single ASCII file. This file will be saved into the same directory as the selected sound files and it’s filename will be “mean spectra.txt”. If the option “Tools” / ”DDE Parameters / LOG-file” : “Enable Dynamic Data Exchange” has been activated and an Excel worksheet is open, the results will also be transferred into that Excel worksheet.

Save ASCII/Binary spectrogram
A spectrogram is generated and saved as ASCII or binary file. The filenames of the files will be derived from the names of the sound files. The extension .WAV will be replaced by .TXT or .SON.

Sampling Frequency Conversion
Each sound file will be converted using the settings made in the command ”Edit”/”Format”/”Sampling Frequency Conversion…”. The source sound files will be replaced by the output this process.

Restore the original time scale of time-expanded recordings
Each sound file will be converted using the settings made in the command ”Edit”/”Format”/”Restore the original time scale of a time-expanded recording…”. The source sound files will be replaced by the output this process.
8<-->16 Bit Conversion
Each sound file will be converted from 8 to 16 if the source file is 8 bit. 16-bit files
will be converted to 8 bits. The source sound files will be replaced by the output
this process.

Stereo->Mono
Each sound file will be converted into a mono file. The conversion will be done
according to the settings made in the corresponding command Edit/Format/Stereo-
>Mono. The source sound files will be replaced by the output this process.

Automatic parameter measurements
A spectrogram is generated from each sound file and the measurements defined in
the spectrogram window menu “Tools”/“Automatic parameter measurements
setup...” will be made. The results will be saved in a LOG file or will be transferred
by DDE as specified on the menu item “File”/“DDE Parameters / Log file...”.

Automatic parameter measurements; save elements as labels
Same as above, except that the detected elements will also be saved as section
labels into the original .wav files.

Automatic parameter measurements; remove gaps
A spectrogram is generated from each sound file and the element
separation of the Automated Parameter Measurements tool is carried out.
The gaps between the detected elements will then be removed from the
wav file (similar to the APM window command Export/Remove gaps
between detected elements from sound file...).

Sound file format conversion
The selected sound files will be saved in the format specified in the “File”/”Save
As” dialog box. The original files will not be overwritten or deleted

Change Volume
The selected sound files will be modified according to the current settings in the
“Edit”/”Change Volume.” dialog box. The original files will be replaced by their
modified versions.

Shred into numbered .wav files
The selected sound files will be shredded into numbered .wav files according to the
settings made in the “File”/“Specials”/”Shred into numbered .wav files...”. The
original .wav files will remain unaffected.
Remove silent sections
The silent sections within the selected sound files will be removed according to the settings made under “Edit”/“Compress”/“Settings”. The original files will be replaced by their compressed versions.

Save events into numbered .wav files
The sound events within the selected sound files will be copied into numbered .wav files. The (threshold-based) event detection is executed according to the settings made under “Edit”/“Compress”/“Settings”. The original .wav files will remain unaffected.

Save labeled sections into numbered .wav files
The labeled sections of the selected sound files will be copied into numbered .wav files. The margin parameter specified under Tools/Labels/’Save labeled sections into numbered .wav files…’ will be used. The original .wav files will remain unaffected.

Pulse Train Analysis
A Pulse Train Analysis is performed for each file (according to the settings made in Analysis/Pulse Train Analysis). The detected pulses and pulse groups will be saved into ASCII files. The ASCII file names are a combination of the original sound file name and the strings _pulses.txt and _groups.txt.

Split multichannel files into mono files (into the same folder)
The selected multichannel files (sound files containing more than one channel) will be split into mono files. The original multichannel files will remain unaffected. The file names of the newly created mono files will consist of the name of the original file and the channel number (filename.wav → filename_0.wav ; filename_1.wav; filename_2.wav; …)

Split multichannel files into mono files (into separate folder)
The selected multichannel files (sound files containing more than one channel) will be split into mono files. The original multichannel files will remain unaffected. The resulting mono files will be saved into the newly created folders channel1, channel2, channel3… The filenames of the created mono files will be identical to the names of the original multichannel files.

Classify labeled sections
The labeled sections of the selected sound files will be classified according to the settings made in “Tools”/”Labels”/”Classify labeled sections…”. Additionally, the classification report table will be saved as an ASCII file (filename.txt). The
ASCII file `filename_stat.txt` reports the number of events that have been assigned to each class.

Classify .wav or .son files (show results in a single table)
The selected .wav or .son files will be classified (by using a spectrogram image cross correlation technique) according to the settings made in the `Classification Settings` dialog box that will be launched after clicking at the Start button on the `Batch processing` dialog box. The classification results can be exported by means of the `Copy table` or `Save table` buttons on the `Classification Report` window.

Detect and classify sound events
The sound events in the selected sound files will be detected and classified according to the settings made in “Analyze/Specials/Detect and classify waveform events...”. The classification report table will be saved as an ASCII file (`filename.txt`). The ASCII file `filename_stat.txt` reports the number of events that have been assigned to each class.

Detect, classify and save sound events
This command is similar to the above command `Detect and classify sound events`, except that it will additionally save the detected events into numbered .wav files. This command might be used for scanning large numbers of long sound files for certain vocalizations.

Scan for template spectrogram patterns and save
This command is similar to the above command `Scan for template spectrogram patterns`, except that it will additionally save the detected events into numbered .wav files. This command might be used for scanning large numbers of long sound files for certain vocalizations.

Template Cross Correlation on short files
This command is similar to the above command `Scan for template spectrogram patterns`, except that it is prepared for classifying short .wav or .son files containing only a single call. That way, the maximum cross-correlation coefficient across the entire .wav file is being determined against each template file and listed in a compact results table.
Noise reduction filter
The selected sound files will be noise-filtered according to the settings made in the command Edit/Filter/Noise Reduction… The original sound files will be replaced by output of the noise gate filter.

Georeference labels / .wav files
The labels (or filename prefixes) of the selected files will be georeferenced according to the settings made in the command Tools/Labels/Georeference labels… The results will be written into a single .gpx, .kml, .shp or .txt file.

Sort files using APM classes
The selected sound files will be sorted into class-specific subfolders that are determined by using the classification option of the Automatic Parameter Measurements tool.

Sort files using template spectrograms (triggered CCF)
The selected sound files will be sorted into class-specific subfolders that are determined by using the command ‘Analyze’/’Specials’/’Detect and classify waveform events…’

Sort files using template spectrograms (continuous CCF)
The selected sound files will be sorted into class-specific subfolders that are determined by using the command ‘Analyze’/’Specials’/’Scan for template spectrogram patterns…’

Modify BWF (bext chunk) metadata
Modifies the bext chunks of the selected .wav files. If there is already a bext chunk in a file, then the new data can either be appended to the existing data (option “append”) or it can replace the existing data (option “overwrite”).

Save application-specific (dXML chunk) metadata
Saves uniform dXML records into the selected .wav files.

Create virtual Metadatabase
Collects various metadata items of the selected .wav files into a XML-formatted metabase.

Insert silent margins
Silent sections of the specified duration will be inserted at the start and the end of each file.
Scan frequency contour and amplitude envelope
Scans the frequency contour and amplitude envelope as setup in the corresponding spectrogram window command on the Tools menu and saves the resulting .at and .ft files.

Create envelope (*.env) sidecar files
Creates .env sidecar files according to the selected Overview Display Parameters and the envelope resolution (FFT frames) setting on the command File/File Open Settings...

Create section labels from waveform events
Executes the command Tools/Labels/Create section labels from waveform events… in a batch process.

Insert USG DIO Time Code / Pulse Train / Single Pulse
Executes the command “File”/“Specials”/“UltraSoundGate DIO”/“Insert time code / pulse train / single pulse…” in a batch process.

Classify Element Sequences
Executes the command “Tools/Labels/Classify Element Sequences… in a batch process.

Calculate Acoustic Complexity Index (ACI)
Executes the spectrogram window command Tools/Calculate Acoustic Complexity Index (ACI)… in a batch process. The results will be saved into the log file titled Acoustic Complexity Index.* that will be saved into the folder of the original .wav files. If the option display ACI versus time is activated, the batch function will save a time series of ACI values rather than a single the ACI\textsubscript{tot} value of the entire file.

All functions use the parameters and options selected in the associated dialog boxes of the underlying commands.

process all files in the selected folder
If this option is activated, the batch procedure will process all files that reside in the selected folder and have the specified extension.

include first-level subfolders
If activated, sound files that are located in first-level subfolders will also be processed.
include all subfolders
If activated, sound files that are located in the specified folder any subfolders will be processed.

launch setup dialog boxes
If activated, the setup dialog boxes for the selected function will be launched before the batch process is started. Uncheck this option in order to bypass these dialog boxes if you don’t need to adjust anything.

skip invalid files silently
Skips invalid files without prompting an error message box.

Files
The *Files*... button launches the file selection dialog box, which supports multiple selections by using the Ctrl key. Alternatively, it is possible to drag and drop the desired files into the *Batch processing* dialog box.

Folder
If the option ‘*process all*.wav files in the selected folder’ has been activated, the *Folder*... button allows to select the desired folder. Alternatively, it is possible to drag and drop at least one file of the desired folder into the *Batch processing* dialog box.

The currently selected files will be listed in the Batch processing dialog box.

Start
The Start button starts the batch process.

Once the batch process is running, the procedure can be cancelled prematurely by clicking at the *Cancel Batch Processing* button.

Real-time processing

The real-time processing tool allows processing newly recorded .wav files once they have been closed by the recording software (Avisoft-RECORDER for instance). The commands that can be executed in real-time are the same as those available on the *Batch processing* tool. The software will permanently look for new files in the specified folder. That folder can be selected from the *Folder*... button or by dragging it from the Windows Explorer window into the *Real-time processing* panel.
Click at the **Setup** button to configure the selected command and then at **Start** to finally start the real-time process. The **Pause** button will inhibit the real-time processing temporarily until the **Continue** button is pressed. The **Cancel** button will terminate the process and close the *Real-time processing* panel. The list on the bottom of the window will report the processed files along with a few benchmarks.

The real-time processing tool can be launched automatically on the SASLab Pro program start by activating the option *Actions/On program start/Launch Real-time processing tool*, making it possible to setup an unattended automated processing system.

The real-time processing option “*Classify short .wav or .son files (show results in a single table)*” allows generating class-specific responses by executing user-defined batch (.bat) files. In order to make this work, it is necessary to create a .bat file for each class that should generate a response. The filenames of the .bat files must match the names of the classes and must reside in the same folder as the .son template files. The .bat filename for the class “?” must be “undefined.bat”.
Metadata

dXML database records>

This submenu allows to define and edit user-defined metadata that will be embedded into the currently opened .wav file. At first, the database structure must be defined from the command *dXML database records > Define database structure...* The individual dXML data records of a set of .wav files can be merged into a virtual metabase at any later time (on-the-fly). This concept makes sure that the integrity of the metadatabase is always inherently preserved.

Edit...

This command launches the dXML metadata record edit box according to the previously defined database structure (command *Define database structure...*). The entered data will be saved along with the .wav file when the command File/Save is executed or when the .wav file is being closed. If the option “multiple records” has been activated on the *Define database structure...* command, then it is possible to add additional records by clicking at the *new* button. The individual records are then displayed in table and can be edited by navigating to the corresponding row by using the < and > buttons or by clicking at the desired row. The *delete* button will remove the selected record. Modified fields will be saved automatically when a new record is launched or manually be clicking at the *Enter* button. The Text modules menu provides predefined text modules that have been defined from the main window command *File > Rename by text module / Define text module*. If the main window option *File > Rename by text module / Define text module > Paste text module into the first dXML field (instead of renaming)* is activated, the text modules accessed from the main window will automatically pasted into the first dXML field.

Batch Edit...

The Batch Edit command allows to save a uniform dXML data to a number of .wav files at once. This is done by launching the corresponding *Batch processing* dialog box. Select here the desired .wav files and then enter the data record(s).

Define database structure...

This dialog box defines the user-defined dXML data fields. Each data field is represented as a individual row.

field name: Each data field must be given a unique field name, which cannot include special characters such as < or >.
type: A field can have one of the following data type attributes: *text, bool, integer, float, date or time*. The format of these data types is as follows:

- **text**: abc123
- **bool**: 0, 1
- **int**: 123
- **float**: 1.23
- **date**: yyyy-mm-dd
- **time**: yyyy-mm-dd hh:mm:ss

The date and time data types will automatically enumerate the current date/time and file creation/modification date in their corresponding combo boxes.

size: Defines the maximum size of the text, integer and float types.

valid entries or pick list: When the file type text is selected, this edit field allows to define a set of strings that are allowed to enter or that will appear as a pick list. The individual strings must be separated by commas ("*","). A list of valid strings (such as species names) can be imported by clicking at the **imp** button.

validation: If activated, only the specified list of strings will be accepted. Otherwise, the defined list of strings will be displayed as a pick list. In case there are no strings defined in the **valid entries or pick list** field and the **validation** option is activated, the database field cannot be empty (null).

imp: Imports a list of strings from a text file into the **valid entries or pick list** field. The individual string the in the .txt file must be separated by CR/LF control characters. The external .ext file can also be read by drag&drop (the cursor must be placed into the desired field before).

lock: If activated, this option will lock the corresponding input field (it will be grayed). Use this option to prevent unintentional modifications on the specific field.

A new field can be inserted by clicking at the **Add** button and the selected field can be removed by the **Remove** button. The selected field (marked by the check box in the row titled **select**) can be moved by using the **up** and **dn** buttons.

The **OK** button will save the defined database structure into a separate .xml file (whose name is displayed at the bottom of the dialog box). The **Open** button allows to open one of the previously saved .xml database structure files. The **SaveAs** button will save the database structure under a new filename. The **Reset** button will reset all fields.
display show. If activated, the dXML edit field will always be launched automatically.

lock: If activated, it is not possible to edit the dXML data in order to prevent undesired modifications. This global lock option will affect all data fields regardless whether the individual field-specific lock options are activated or not.

multiple records: If activated, it is possible to enter more than one data record for each .wav file.

history show: If activated, this option will memorize all entered data and it will be possible to select these previous data from a pick list.
reset: Resets the history data.

XML View...
Launches the selected XML viewer application (command Metadata> Select XML viewer...) and displays the dXML data record(s) within that application.

Copy
This command copies the current XML-formatted dXML data set into the clipboard. It can then be pasted from the corresponding Paste command in SASLab Pro or it can be imported into another XML application such as the Microsoft XML Notepad.

Paste
This command will paste a XML-formatted dXML data set from the clipboard.

Remove
This command will completely remove the dXML chunk from the currently opened .wav file.

mXML measurements >

This submenu provides commands for managing measurement data that are embedded into the .wav file. This measurement logging functionality can be activated from the command Metadata > mXML measurements > Enable mXML data logging or from Tools > DDE Parameters, Log File... If activated, the measurements will be saved into an application-specific RIFF chunk titled “mXML” each time when a measurement copy command is executed. The logged measurement data can be viewed and edited from the command Metadata >
mXML measurements > View entries… In addition to that, the individual mXML datasets of a bunch of .wav files can be collected and queried from the command Metadata > Create Metadatabase…

Enable mXML data logging
This option enable the mXML data logging mode. If activated, the measurement data will be saved into the application-specific mXML RIFF chunk, each time an copy measurement command is executed.

View entries…
The mXML Overview window displays the mXML measurement data. There are two list boxes. The list box on the top shows all mXML data records, indicating the type of measurement data and the date, when the measurements were taken. The other box at the bottom shows the content of the currently selected data record.

Selection

Copy: Copies the selected ASCII-formatted (TAB-delimited) data record into the clipboard.
Delete: Deletes the selected XML-formatted data record.

Copy
Copies the XML-formatted mXML data into the clipboard. These data can then for instance be pasted into the Microsoft XML Notepad.

Remove
This command will completely remove the mXML RIFF chunk from the .wav file.
Save As…
Saves the mXML data into a .xml file.

XML View…
Launches the selected XML viewer application (command Metadata> Select XML viewer...) and displays the mXML data record(s) within that application.

View XML RIFF chunks >
Allows to view any .wav file RIFF chunk that contains the substring “XML” in its RIFF identifier (such as “iXML” for instance).

Select XML viewer…
Selects the application for the above View XML RIFF chunks command. A suited application would be the free “XML Notepad” application by Microsoft
bext (BWF) Metadata...

This menu provides tools for editing embedded (bext RIFF chunk) metadata complying with the Broadcast Wave Format standard.

Edit

This dialog box allows to view and edit the metadata information that is stored in the ‘bext’ chunk of the Broadcast Wave Format (BWF) wave file format. If the currently opened file does not already contain a bext chunk, this command allows to add additional metadata information to the .wav file.

The OK button reads the modified metadata information from the dialog box, but still does not update the underlying .wav file. The modified metadata information can be saved from the command File/Save.

The Reset button will reset (delete) the bext metadata information. The Save file button saves the currently opened .wav file along with the edited metadata (it combines the OK button function with from the command File/Save).

The format of the BWF metadata fields that can be edited is as follows:

- **Description**: 256 characters
- **Originator**: 64 characters
- **Originator Ref**: 32 characters
- **Origination Date**: 10 characters, must be entered as “yyyy-mm-dd”
- **Origination Time**: 8 characters, must be entered as “hh-mm-ss”
- **Coding Hist**: Unlimited number of characters

Batch Edit

The batch edit command is similar to the above Edit command, but it is applied to a set of .wav files by using the corresponding Batch processing command option.

Create Metadatabase...

This command can collect the individual dXML, mXML and other file-specific metadata information from the selected individual sound files into a single XML table. This is done by using the corresponding Batch processing option.
When the *Create Metadatabase* command is executed at the first time or if the related command *Define and create virtual Metadatabase...* is executed, a dialog box titled *Virtual Metabase setup* is launched, which allows to select the desired metabase data fields. In addition to that, there are a number of options for creating sidecar files (sidecar files contain related information on the individual .wav files. Their filename is identical to name of the original .wav file, except that they have a different extension, such as .gpx or .xml).

Select metabase fields

filename with full path: If activated, the full pathname of the .wav file is taken. Otherwise, only the filename without the path will be saved.

filename prefix(es): Prefixes preceding the actual filename string (separated by space characters) will be enumerated.

sample rate: Sample rate of the sound file in Hz.

bit-depth: Number of bits in each sample (usually 8, 16 or 24 bits)

number of channels

duration: Duration of the sound file in seconds

creation date: Creation date of the sound file taken from the file system of the operating system.

modification date: Modification date of the sound file taken from the file system of the operating system.

bext origination date: Origination date taken from the bext RIFF chunk of a BWF file.

RECORDER creation date: Creation date taken from the TIME chunk created by the Avisoft-RECORDER software.

GPS coordinates: The latitude, longitude and elevation taken from the GPS chunk created by the Avisoft-RECORDER software. The coordinates are expressed in the WSG 84 format.

GPS UTC time stamp: The UTC date and time taken from the GPS chunk created by the Avisoft-RECORDER software.

dXML database fields: The dXML data fields entered in the RECORDER or SASLab Pro software.

mXML measurements: The mXML measurement data logged by the SASLab Pro software.

number of labels: The number of labels in the sound file.

label list: Complete list of all labels in the sound file.

iXML RIFF chunk: The complete iXML RIFF chunk of a BWF file.
bext RIFF chunk (BWF): The bext chunk fields of a BWF file.

Create sidecar files
- coordinates (*.gpx)
- coordinates (*.kml)
- dXML (*.dxml.xml)
- mXML (*.mxml.xml)
- labels (*.lbl)
- labels (*.labels.xml)
- iXML RIFF chunk (*.ixml.xml)

Output
- **XML output filename (…)**: Enter here the filename of the resulting metabase .xml file or use the … button to select the desired path.
- **Create flat XML structure**: If activated, a flat XML structure with a reduced level of hierarchy will be created.
- **Launch XML viewer application**: If activated, the selected XML viewer application will be launched to display the resulting metabase .xml file.
- **XML viewer application (…)**: Select here XML viewer application. A suitable application would be for instance the Microsoft XML Notepad, an internet browser, or Microsoft Excel.

The creation of the metabase can be started by clicking at the **OK** button. The resulting metabase will be displayed in a table titled **Metabase**:

Metabase
- **expand**: If activated, potential multiple entries (more than one record per file) will be displayed.
- **Open file**: Opens the currently selected .wav file in the SASLab Pro main window.
- **browse**: If activated, the currently selected file will be automatically opened in the SASLab Pro main window.
- **GIS export…**: Exports selected metabase data fields into a .gpx or .kml file or the entire metabase into a shapefile. This button is only available if there are geographic coordinates in the metabase.
- **Copy**: Copies the metabase table into the clipboard (as a TAB-delimited ASCII table).
- **Query**: Query command for filtering the metabase.
Folder…: Use this button to create a metabase of another folder using the previous settings. Alternatively, the desired folder can be dragged into the Metabase dialog box.

Update!: Updates the metabase using the previous settings.

Open xml: Opens the underlying .xml metabase file in the specified XML viewer application.

Phenology: Generates phenology histogram data (number of .wav files on a day versus time of day table) based on the date attribute of the .wav files in the metadatabase.

Metabase GPX / KML / SHP Export

The Metabase GPX / KML / SHP (GIS) Export tool allows exporting selected data fields of the metabase table into a .gpx or .kml file or the entire metabase into a shapefile.

Waypoint data
name: Select here the metabase field that should be assigned to the <name> tag of the .gpx file.
comment: Select here the metabase field that should be assigned to the <cmt> tag of the .gpx file.
description: Select here the metabase field that should be assigned to the <desc> tag of the .gpx file. This option is only available on the .gpx format.
Icons based on: Select here the .kml name or description field in order to assign different icons for each string. If there has been defined a picklist on the dXML tool for the corresponding dXML field, the order (color) of the icons will be fixed. In this way it is for instance possible to create maps with different icons for each species. This option is only available on the .kml format.

Select the empty line in case the specific .gpx/.kml tag should not be created. In case there are multiple data records associated to a single .wav file (such as multiple species names for instance), make sure to activate the “expand” option on the Metabase window in order to create waypoint for each of these additional data records.

Waypoint File: Enter here the name of the .gpx / .kml / .shp waypoint file to be created. Use the … button to browse to a specific folder.

Add links to the .wav files: If activated, direct links (full path) to the .wav files will be added to each waypoint.
Launch GIS application: If activated the created .gpx will be opened by the specified GIS application (using a command line parameter) that has been selected below. Note that only .kml files can be opened this way in GoogleEarth.
Click at **OK** to create the waypoint file.

Phenology histogram export

The Phenology tool allows exporting phenology histogram data (number of .wav files on a day versus time of day table) based on a date field of the metadatabase. It is therefore required to add at least one of the date fields (*creation date*, *modification date*, *bext origination date*, *RECORDER creation date* or *GPS UTC time stamp*) to the metadatabase (Metadata > Define and create virtual Metadatabase… > Virtual Metadatabase setup).

Once all the selected .wav files have been added to the metabase (which can take a few minutes depending on the number of files) click at the **Phenology** button on the bottom of the **Metabase** window. The Phenology Histogram Export dialog box allows adjusting the settings of the tool:

Interval: Selects the duration of the time interval during which the number of .wav files will be accumulated.

Date format: Defines the format of the date field of the exported ASCII table.

limit the time of day from/to: If activated, this option will limit the output to the selected time of day interval. If the from: clock time is later than the to: time, the analysis will be carried out continuously throughout the night time (and the .wav files occurring after midnight will still be assigned to the day before). If this option is not activated, the analysis will be performed from 0:00 to 23:59.

limit the season from/to: If activated, this option will limit the analysis to the selected months of the year. All days (rows) of the selected season will be added continuously to the output file regardless if there are any .wav files at a day or not. If this option is not activated, the output file will contain only those days (rows) at which at least one .wav file was recorded.

Output File / ...: Enter here the filename of the .txt file into which the output file should be saved.

copy into clipboard: If activated, the output file will be copied into the Windows clipboard rather than saving into a file on disk. Once the analysis has finished, the results can be pasted (for instance in Excel) from the clipboard.

Use the **Query** command on the **Metabase** window in order to filter the database for individual species or instance.
Metabase Query

The metabase query command allows to filter the metabase file for specific field entries. Various filter criterions can be defined for each metabase field. If more than one field has been set up with a filter criterion, then all these criterions must be satisfied in order to select the corresponding database record. The results will be saved in a new .xml file. The entered query filter settings can be saved for later use.

To define a filter criterion for a specific metabase field, navigate to the field (row) on the overview table and then select the filter criterion from the list box at the top of the dialog box. The available options are as follows:

* don’t care (= no filter)

= equal
The field contents must exactly match the defined filter criterion. It is possible to enumerate several different strings that are separated by commas. Use the imp button to import an external text file containing the desired strings (separated by CR/LF control characters). Alternatively, the .text can be loaded by drag&drop into the dialog box.

< smaller than
The value of the metabase field must be smaller than the specified filter criterion.

< greater than
The value of the metabase field must be greater than the specified filter criterion.

>< inside interval
The value of the metabase field must be inside the specified filter interval.

<> outside interval
The value of the metabase field must be outside the specified filter interval.

If the field does not contain integer or float numbers, the comparison is done lexicographically.

null (field empty)
The metabase field must be empty.
not null (field not empty)
The metabase field must not be empty (containing at least one character).

Open… : Opens a previously saved query settings file.
Save… Saves the current query settings under.
SaveAs… Saves the current query settings under a new name.
Reset: Resets the query settings to no filter (“don’t care” for all fields).

XML output filename (...): Defines the filename of the resulting filtered .xml metabase file.

The query procedure is started by clicking the OK button. The content of the resulting output file is displayed in a new window titled “Metabase Query”, which is quite similar to the original Metabase window. The buttons in the section “process .wav” files allow to copy, delete or rename the .wav files that have been returned by the query command.

Metabase query… This command first creates a metabase and executes a query according to the previous settings.

Save changes without prompting If activated, this option rejects the default prompt that would normally appear if the metadata have been modified, which can accelerate the process of adding metadata to a series of .wav files.
Actions

On new sound file >

Spectrogram
If this option is checked, the spectrogram is created automatically each time a new file is opened (Create Spectrogram).

One-dimensional transformation
If this option is checked, the one-dimensional transformation is created automatically each time a new file is opened (One-dimensional Transformation).

Pulse Train Analysis
If this option is checked, a Pulse Train Analysis is carried out (see page 60).

Remove silent sections
If this option is checked, the silent sections will be removed from the soundfile (see page 80).

On program start >
The following options will start the corresponding components when Avisoft-SASLab Pro is started:

Real-time spectrograph
Graphic synthesizer
Launch Real-time spectrum display
Launch Real-time processing tool
Open last sound file

Keyboard Shortcuts and Popup Menu
This command allows defining the keyboard shortcuts for all menu commands of the selected window. Additionally, each command can be added to the popup menu, which is activated by right clicking on the window. To modify a keyboard shortcut, first select the command on the list and then activate the desired shortcut on the bottom of the dialog box. In order to simplify the access to frequently used commands, it is recommended to use appropriate shortcuts or popup menu entries for these commands.
The Spectrogram Window

File

Print Spectrogram
The currently visible spectrogram is printed directly. The hardcopy is done in landscape format. If you need more flexibility, you should use one of the following menu options to insert the spectrogram into other Windows applications where the spectrogram can be resized and additional textual information can be added. See chapter *Spectrogram output* on page 200 for more details.

Copy Spectrogram
The currently visible spectrogram is copied into the clipboard. If there is a marked section only this section is copied. The current Export-Parameters defined in the menu option "File/Export-Parameters" determine the appearance of copied spectrograms. If the spectrogram is longer than the visible section on the screen, the menu "File/Copy entire Spectrogram" can be used to copy not only the visible section.

Save Spectrogram Image
The spectrogram is saved as a graphics file. If there is a marked section, only this section will be saved. The current Export-Parameters determine the format of the saved spectrograms. The spectrogram can be saved either as .WMF, .BMP (DIB) or .TIF format. The WMF format (Windows-Metafile) should be preferred because of the higher quality of the true-type font labels.

Depending on the size (length) of the spectrogram, it will be saved either as a single line spectrogram or a multiple line (and multiple page) spectrogram. Alternatively, the commands File/Save Spectrograms Image… and Save entire Spectrogram Image… can be used in order to determine the specific output format regardless of the current spectrogram length.

Copy entire Spectrogram Image
The entire spectrogram (not only the marked or visible section) is copied into the clipboard. The current Export-Parameters determines the appearance of copied spectrograms. The spectrogram is copied in WMF and BMP (DIB) format.

Save entire Spectrogram Image
The entire spectrogram (not only the marked or visible section) is saved. The current Export Parameters determine the appearance of saved spectrograms. The
spectrogram can be saved either as .WMF, .BMP (DIB) or .TIF format. The WMF format (Windows-Metafile) should be preferred because of the higher quality of the true-type font labels. If the spectrogram is very long, the **Export Parameters** option **create multiple (page) files** should be activated.

Export-Parameters

Exporting of spectrograms using the menus "File/Save Spectrogram" or "File/Copy Spectrogram" can be influenced by setting different export parameters in the menu "File/Export Parameter". The following options can be changed:

Frequency Axis

Enable scale: Enables the frequency axis scale.

display margin values: The zero is displayed at the frequency axis.

display unit [kHz]: The Unit of the frequency axis is displayed.

display axis title: The axis title will be shown (as defined behind).

line spectrum: If the single/mean (power) spectrum is activated from *Additional Spectrogram Information* and this option is activated, the spectrum is represented as a set of separated spectral lines. Otherwise, the spectrum is plotted as a continuous curve. The **width** parameter determines the line width of the spectrum and waveform displays for .wmf formatted images. If a solid (filled) spectrum is desired, increase the width parameter should be increased until the desired result is achieved.

graduation mark length: Relative length of the graduation markers in percent of the standard length. This value should be increased if the spectrogram image is to be stretched in vertical direction or condensed in horizontal direction. This can prevent, that the frequency markers appear to short relative to the time markers after stretching. This option has no effect in BMP and TIFF format (only WMF).

The **distance between graduation markers** can either be set to a **static** value or it can be set automatically, when the option automatic is selected. The **automatic** scaling can be influenced by selecting an appropriate percent value of the standard distance.

left margin: Relative size of the left margin. Increase this parameter if you want to change the aspect ratio of the pasted .wmf spectrogram image. This will prevent cutting the frequency axis labels.

limit range from ... to ... kHz: The normal frequency range of a spectrogram goes from zero to one half of the sampling frequency of the underlying sound file.
The frequency range that can be specified here will limit that range for the spectrogram output.

Time Axis

Enable scale: Enables the time axis scale.

Absolute Time Axis: The absolute time axis scaling is maintained when exporting a marked section of the spectrogram. Activate this option if you want to export a long spectrogram in smaller pieces. If this option is disabled the time axis starts always with zero.

display unit [s]: The unit of the time axis is displayed.

display axis title: The axis title will be shown (as defined behind).

extra yardstick: An extra yardstick (time scale) is displayed inside the spectrogram. This is especially useful for very short spectrograms, when space is limited for the standard time scale at the bottom of the spectrogram.

zoom out: If activated, the ‘Tools’/‘zoom out time axis’ settings will also be used for the exported spectrograms. If this option is not activated, the spectrogram will be exported in its original format without applying the zoom out settings.

graduation mark length: Relative length of the graduation markers in percent of the standard length. This option has no effect in BMP and TIFF format (only WMF).

The **distance between graduation markers** can either be set to a static value or it can be set automatically, when the option **automatic** is selected. The **automatic** scaling can be influenced by selecting an appropriate percent value of the standard distance. This value should be increased if the spectrogram image is to be jolted in horizontal direction. This can prevent, that the time markers and the numbers belonging to them appear to close, especially in very long spectrograms

enable envelope curve amplitude scale: Enables the envelope curve (waveform) amplitude scale. This option is only available when the “Time Axis” / “Envelope Curve” option has been activated from the command “Display”/”Additional Spectrogram Information…”.

high res. ticks: If this option is checked, additional small graduation markers without labels will be displayed.

line width: Relative width of the spectrogram frame and the graduation markers in percent of the standard width.

help line width: Relative line width of the grid, labels and the high res. ticks.

character size: Relative character size in percent of the standard size.

show dB scale: The color mapping of the spectrogram magnitude will be displayed.
no closed frame (only x and y axis): If this option is checked, the spectrogram will have only x and y axis and the closed frame is omitted.

display frequency cursors: If this option is activated, the currently active frequency cursors (except reticule cursors) will be displayed on the exported spectrogram.

Prompt for caption: If this option is checked, a caption text input box will occur before the spectrogram is saved or copied into the clipboard. The specified text will then be added to the spectrogram image.

Title alignment: Position of the sound file title at the top of the display. Possible options are left, center, right and disabled if the current title should not appear. The sound file title can be specified from the label settings dialog box (see page 161).

Add filename to title: If this option is checked and the title alignment is not disabled, the filename of the sound file will be displayed at the top of the spectrogram.

Add spectrogram parameters to title: If this option is checked and the title alignment is not disabled, the spectrogram parameter settings will be displayed at the top of the spectrogram.

Scaling in Printing and Saving

automatic: The spectrogram size is set automatically using the full-page size. As a result the spectrogram size depends on the length of the spectrogram.

maximum line count per page: When the spectrogram is printed using the menu ”File”/”Print entire spectrogram” / ”several lines” and the option automatic has been selected, the specified value limits the maximum number of spectrogram lines printed on one page. Depending on the specified value and the amount of data, the spectrogram will be printed on more than one page.

static height: The spectrogram size is set to the specified spectrogram height independently of the spectrogram length. Depending on the specified value and the amount of data, the spectrogram will be printed on more than one page.

static width: When the spectrogram is printed using the menu ”File”/”Print entire spectrogram” / ”several lines” and the option static width is selected, each line of the multiple line spectrogram is set to the duration specified in the spectrogram width (time/line). Depending on the specified value and the amount of data, the spectrogram will be printed on more than one page.

File Settings (for saving spectrogram images as .wmf, .tif or .bmp files)
This section applies to the command ‘File’/‘Save Entire Spectrogram Image’/‘several lines…’. If the option **create multiple (page) files** is activated, the software will output more than one file if necessary. It is recommended to activate this option for saving long spectrograms (otherwise, the resulting spectrograms would be very large with tiny rows or the software might even crash due to the large file sizes. The multiple output files are identified by the additional filename extension “_pageXX”. The dimensions of the files are determined by the settings defined in the above section Scaling in Printing and Saving.

Default: This button returns to the default parameters.

Data Export >

Copy measured value
Copies the last measured value (frequency, time or duration) in ASCII-format into the clipboard.

Copy t1, t2
Copies the start and end time [s] of the marked section into the clipboard.

Copy energy of marked section
Copies the energy [V*V*s] of the marked section into the clipboard. If the Large rectangular eraser cursor is activated, the energy is computed for the marked frequency range only.

DDE Parameters / Log File
This dialog allows defining, whether the measurement values should also be transferred via DDE (Dynamic Data Exchange) to other applications or saved into an ASCII-log-file during copying into the clipboard.

Enable Dynamic Data Exchange
If this option is enabled, the measurement values will also be transferred to another application during copying the data into the clipboard. This would be very effective, if the DDE-server (the application receiving the data) is a spreadsheet software like Excel, because there aren't necessary any further activities by the user to complete the transactions. Tables of measurement values are generated automatically within the spreadsheet.
Application
This is the name of the Windows-application, receiving the data (for instance "Excel").

Topic
This is the name of the window or file, the data should be allocated to (for instance "Table1" or Table1.xls" in Excel). For Excel, it is not necessary to specify a Topic name (delete the topic name string). The data will then be written into the default table.

Item
This is the name of the data element the data should be transmitted to. (for instance "R1C1" - Row No 1, Column No 1- in Excel) If data are transferred to a spreadsheet, here the address of the first location on the sheet should be specified. In Excel the syntax of the cell address is RyyCxx, where yy is the row number and xx is the column number. "R2C1" would address the cell at the second row at the first column. In other language versions of Excel the abbreviations for row ”R” and column ”C” have to be replaced by the corresponding translations. (German: Z1S1, Spanish: F1C1). Use the Reset button to reset both the row and column to position 1.

New line after x records
In most cases of statistical analysis it is necessary to arrange the collected data in a table. Each row would characterize a single element of the whole amount of data records. The single data records are separated by a carriage return and a line feed. The value expected in this edit field determines how many data entries will be arranged in a single line.

If you had to do a statistical analysis of a large number of bird song syllables you could do the following steps. It is assumed that two syllables of each song have to be analyzed.

- Activate a cross-hair (reticule) cursor.
- Configure the DDE parameters using the menu "DDE Parameters / Log File": Item (start address) R1C1, new line after 4 records.
- Start Excel or another spreadsheet running under Windows.
- Click at the start- and end-points of the two relevant elements of the first song. The coordinates of each point will be transferred to the spreadsheet automatically. The cells R1C1 to R1C12 will be filled. Click at the start- and end-points of the second song. These coordinates will be arranged under the first entry (R2C1 to R2C12). A comment could be assigned to each song in column 13 behind the data set.
This mechanism of automatic data arrangement will only work if the first cell-address has been specified in the edit field "Item" according to the instructions mentioned above.

If the receiving application is Excel, it is important to make sure that the DDE data receiving mechanism is enabled. There is a dialog box called "Options" or "Settings". The option "Ignore other applications" in the "General" section should not be activated. In addition to that, the “R1C1 reference style” option for formulas should be activated. The precise names of these options depend on the specific version of Excel.

The edit field "new line after ... records" should be set to zero if no automatic cell-address increment is required.

Write measurement values into log file
If this option is active, copying of measurement values (through one of the copy commands) will be accompanied by writing these values also into a log file.

File format
This list box defines the file format of the log file. The following formats are available:

- **ASCII table (.txt)**: TAB-delimited text file without column titles
- **HTML table (.htm)**: HTML-formatted table without column titles
- **XML table (.xml)**: XML-formatted table including column titles
- **SQL script (.sql)**: Script file that contains SQL commands (CREATE TABLE, INSERT INTO tablename VALUES) for creating a table in SQL.

The SQL command CREATE TABLE that defines the table structure is only saved if the specified log file does not already exist. So, if the structure of the measurement data has changed, the name of the log file should be changed or the old file should be deleted in other to force the CREATE TABLE statement.

File name
This field specifies the name of the log file, which will receive the measurement values.

Comment (only available for the .txt and .htm format options)
This field allows inserting a comment into the log file. Each comment will be stored in a new line. See also page 195.

Write measurement values into mXML RIFF chunk
This option will additionally save the measurement data into an application-specific mXML RIFF chunk of the .wav file each time when measurement copy command is executed. The logged measurement data can be viewed and edited...
from the command Metadata>mXML measurements>View entries... or they can be collected from the command Metadata>Create Metadatabase...

Copy ASCII Spectrum
The spectrum visible on the left of the spectrogram is copied in ASCII-format into the clipboard. The intensities of frequency lines are normalized. The single values are separated by tabulator stops. At the end of the line is the frequency distance between two lines in the unit Hertz. This line is terminated by Carriage Return and Line Feed (CR/LF). This allows statistical analyzing of spectra in spreadsheet programs like Excel.

Copy ASCII Spectrogram
The currently visible spectrogram is copied into the clipboard in ASCII format. If there is a marked section only this section is copied. Note that large spectrograms can't be read from the clipboard by some applications. In this case use the file save option to export spectrogram data.

Save ASCII/Binary Spectrogram
The currently visible spectrogram is saved into an ASCII or binary file, depending on the file type selected. If there is a marked section only this section is saved. Every line in the ASCII file corresponds to one spectrum. The first value of each row is the intensity of the lowest frequency.

Copy ASCII-Frequency versus time
In case of active additional Spectrogram information (Maximum, Median, Quartiles) this function allows to copy the frequency versus time into the clipboard in ASCII format. The time [seconds] of each frequency sample [Hz] is listed in the first column. When the Maximum option is activated, the amplitude [dB] at the maximum is listed in the third column. This format supports a XY-display in spreadsheet applications.

Copy Envelope into curve-window
If the envelope display above the spectrogram is enabled it can be copied into a separate curve-window. This can be done also by double-clicking at on the envelope image.

Copy Spectrum into curve-window
If a spectrum display is enabled it can be copied into a separate curve-window. This can be done also by double-clicking at on the spectrum image on the left of the spectrogram.
Mean Spectrum of entire spectrogram
The mean (averaged) spectrum of the entire spectrogram (not only the visible section) is copied into a separated curve window.

Max spectrum of entire element
The parameters are derived from the maximum spectrum (peakhold mode) of the entire element.

Copy Spectrogram into 3D curve-window
The marked section of the spectrogram is displayed as a 3D graph. This command can be executed alternatively by double-clicking on the marked section. Please keep the size of the spectrogram (FFT size and duration) as small as possible. Large amounts of data will dramatically slow down the 3D display.

Power Spectrum
If this option is checked the power spectrum is copied instead of the magnitude spectrum when the function above is executed.

Display

Display-Parameters...

The menu option controls the display parameter of the spectrogram.

It can be chosen between black&white and color display by checking the *Color* checkbox. In black&white display the threshold for spectrogram display can be adjusted. In color mode the intensity of the spectrogram can be adjusted. Both is done by shifting the vertical scroll bar. In color mode you can select different color and contrast tables.

The option *autogain* sets the intensity automatically depending on the maximum amplitude of the currently visible section of the spectrogram. This ensures, that always the full color range is used for the spectrogram dynamic range.

Grid
A grid is enabled inside the spectrogram.

Cut-Off Frequency
In recordings made under free field conditions, undesired low frequency disturbance signals might occur. If the signal to be observed is higher than the disturbances, these undesired signals could be hidden by input of the desired cut-
off frequency. All signals below this frequency will be removed from the Spectrogram. Note that this does not influence the time signal. If you want to remove low frequencies from the time signal, use the menu "Edit/Time Signal Filter" in the main window.
There is also a low-pass option in order to hide high frequency sound components from the spectrogram. The Default! button will disable all filters.

Additional Spectrogram Information

Besides the spectrogram display there can be displayed some additional information about the signal visible on the spectrogram.

This information can be divided into information along the time axis and information along the frequency axis:

Time Axis

Envelope Curve: The envelope curve of the signal is displayed above the spectrogram.

Single Frequency: The intensity of a single frequency along the time axis defined by a free frequency cursor is displayed above the spectrogram. The free frequency cursor can be activated by clicking inside the area between the bottom of the status line and top of the spectrogram. Then you can drag the cursor to the desired position in the spectrogram.

Frequency Interval: The intensity of a frequency interval along the time axis defined by two free frequency cursors is displayed above the spectrogram. The free frequency cursors can be activated by clicking inside the area between the bottom of the status line and top of the spectrogram. Then you can drag the cursor to the desired positions on the spectrogram.

Disabled: Disables any additional information along the time axis.

Size: Relative vertical size of the curve.

Frequency Axis

Single Spectrum: The spectrum at the left margin of the marked section is displayed.

Mean Spectrum: The mean spectrum of the marked section is displayed.
Max Spectrum: The maximum amplitudes over all spectra of the marked section are displayed.

Disabled: Disables any additional information along the frequency axis.

The check boxes "Normalized" determine whether the displayed additional spectrogram information should be normalized or not. This allows observation of small signals without scaling problems. If normalized display is disabled, the displayed range is determined by the edit box "Scaling". There you can input values between 0.1 and 100.

The option **total** will calculate the **mean** or **max spectra** always from the entire spectrogram (not only from the currently visible or marked section).

Spectrogram

Maximum: The maximum of the instantaneous spectra will be determined. Solid lines will visualize the progress of the maximum.

Mean frequency (50%): The mean frequencies of the instantaneous spectra will be determined. Solid lines will visualize the progress of the mean frequency. This kind of display is useful for the evaluation of noisy signals.

Quartiles (25%, 50%, 75%): The quartiles of the instantaneous spectra will be determined. Solid lines will visualize the progress of each quartile. The instantaneous spectra will be integrated and divided into four equal parts. The three frequencies dividing the magnitude spectrum into four parts are called quartiles. This kind of display is very useful for the evaluation of noisy signals. The distance between the lower (25%) and upper quartile (75%) is a measure of the pureness of sounds. The evidence of the quartiles can often be improved by averaging the spectrogram using the function **Tools/Image Filter: Average**

The solid lines of the additional information Maximum, Mean frequency and Quartiles will be drawn only at those points where the maximum of the instantaneous spectrum exceeds a certain threshold. This threshold depends on the threshold of the spectrogram display that can be changed using the scroll bar in the dialog "Display/Display Parameter"

Disabled: Disables any additional information inside the spectrogram.

Hide Spectrogram: If this option is activated the spectrogram itself will not be displayed. This may improve the readability of the Maximum, Mean frequency and the Quartiles.
Show the Spectrogram parameters of this spectrogram

This dialog box shows the spectrogram parameters that were used to create the currently displayed spectrogram.

Level Display Mode

This dialog box selects the sound level display mode on the spectrogram display. The available options are as follows:

Peak Level: The sound level is referenced to the peak amplitude (values are 3dB higher than the RMS level).

RMS Level: The sound level is referenced to the RMS amplitude (values are 3 dB lower than the Peak Level).

Spectrum Level: The sound level is displayed in spectrum level units (= RMS Level -10 log(BW)). The spectrum level representation is useful for evaluating noise signals because the measurements are independent of the analysis bandwidth (the numbers are normalized to an analysis bandwidth of 1 Hz). Do not use this option for evaluating sinusoidal sounds (use the RMS Level instead).

Absolute Time Scaling

If absolute time scaling is enabled, the time axis in the spectrogram window is displayed absolutely, relative to the top of the sound file in the main window.

Limit measurement decimal places to spectrogram resolution

This option will adopt the number of decimal places in all measurement values to the resolution of the spectrogram. This option is activated by default and could be unchecked in order to disable this kind of rounding.

Create Color Table

The delivered color tables for spectrogram display can be changed or new color tables can be generated.

In the occurring dialog box first appear the 16 colors used in the current spectrogram display under the headline "User-defined Colors". These colors can be modified by clicking on the color to be changed and selecting the desired color on the right. After the color editing has finished you have to decide whether the changed color table should be saved in a new file. If this option was selected the new color table will appear in the selection box under the menu "Display/Display Parameter".
Hide buttons and numeric display area
If this option is checked, the buttons and the numeric display area on the top of the spectrogram window are hidden. This option is useful for evaluating several spectrograms simultaneously, when space on the desktop is limited.

Hide main window
If this option is checked, the main window is hidden. This option is useful for evaluating several spectrograms simultaneously, while the editing functions from the main window are not needed. WAV files can be opened from the menu WavFile.
Tools

Undo last modification This command will undo the most recent modification of the spectrogram (erasing, image filtering).

Playback
The marked section is played back through the sound card.

Playback settings
This dialog box provides a few options for playing waveforms through the computer soundcard.

other sample rate: If this option is checked, the soundfile will be played at the selected alternative sample rate. This would either slow-down or speed-up the playback.

Default! The Default button sets all playback settings to their defaults.

device: Select here the desired audio playback device if you have more than one playback devices installed on your computer. The first option “default audio playback device” lets Windows chose the specific device.

Heterodyned playback mode
See page 29.

Enlarge Image
The spectrogram image is enlarged by the factor of 2, 4, 8 or 16. Enlarging and subsequent image filtering can by useful to improve the image quality.

Reduce Image This option allows reversing the Enlarge Image command.

Zoom out time axis
Zooms out the time axis of the spectrogram display. In large spectrograms this option allows to see a larger section of the file. The internal resolution of the spectrogram (for export commands or Automatic Parameter Measurements) is unaffected.
Scroll >
Left, right, begin, end
These commands move the spectrogram window view if the spectrogram is longer than the display window and are only intended for use with the associated keyboard shortcuts.

Auto Scroll
The Auto Scroll command supports reviewing long spectrograms without repeatedly clicking at the scroll bar. The spectrogram window is moved repeatedly by the specified increment.
increment: The increment defines the spectrogram window displacement for each move, expressed in percent of the window (page) duration. So, a value of 100% would correspond to a full page and a value of 10% would move the view only by 1/10th of a page.
interval: The interval defines the timer interval at which the increments should take place. Small intervals will lead to a faster movement.
The Default button will restore the default settings (90% and 1 s). The Start button starts the automatic scrolling process. The label of this button will change to Stop once it has been started. The scrolling can stopped either by clicking at this Stop button or by clicking at the Pan area below the spectrogram display.

Image Filter: Average, Median
For improving of spectrogram images a mean value or median filter can be applied to the spectrogram. This allows removing of noise from the spectrograms. Note that distortion of spectrogram structures can occur as a result of filtering.

Scan frequency contour and amplitude envelope
The frequency contour and optionally the amplitude envelope are scanned from the marked section of the spectrogram. The resulting contour will be displayed in the Graphic Synthesizer window (see page 223).

This command can either be used for measurement purposes or for re-synthesis.

Element separation
The frequency contour will be scanned from sound events that can be identified in various ways (either by threshold comparisons or interactively through section labels). The separation mechanism is identical to that of the Automatic Parameter Measurements command. See Element separation (page 167) for details.

There are three options for the temporal properties of the frequency contour:
Adaptive intervals
If this option is selected, the minimum possible number of sample points is used to satisfy the max deviation parameters listed below.

max. deviation A(t): This value determines the accuracy of the amplitude trace. It is expressed in percent of the maximum magnitude of the entire spectrogram. Larger values will produce fewer samples in the amplitude plot, which may simplify any further editing of the elements. In order to get maximum fidelity it is recommended to set this value to zero.

max. deviation F(t): This list box determines the accuracy of the fundamental frequency trace. The topmost value, which is equal to the frequency resolution of the spectrogram, will realize the maximum possible accuracy. Larger values will produce fewer samples in the fundamental frequency plot, which may simplify any further editing of the elements. In order to get maximum fidelity it is recommended to use the topmost value if no editing is required.

regular intervals (relative)
The detected elements will be divided into a fixed number of intervals. This means that the absolute time intervals will vary depending on the duration of each element. This option might be for instance useful for comparing the frequency contours of signature whistles. The fixed number of frequency samples would enable a more straightforward statistical analysis (e.g. cross correlation).

regular intervals (absolute)
The sample points will be taken at fixed time intervals.

sampling time: This edit field specifies the absolute distance between consecutive sample points in milliseconds. The minimum interval is limited by the temporal resolution of the spectrogram.

statistics: The peak frequency samples taken from the spectrogram can be fed (by clicking at the “Calc. Stat.” button) into an statistical analysis module that provides the following options:

- **Histogram:** The relative distribution of the peak frequency samples will be displayed in a separate curve window.
- **Frequency change:** The frequency changes within the detected elements will be displayed in a two-dimensional scatterplot. The x-axis represents the peak frequency at t. The y-axis represents the associated peak frequency at the next time slot (t + delta t). Delta t corresponds to the selected sampling time.

Calc. Stat. This button will calculate and display the selected statistics.
extract fundamental
If this option is activated, the fundamental frequency course is extracted from the spectrogram even if the fundamental has not the maximum amplitude. The underlying algorithm is based on a harmonic peak search on the spectra of the spectrogram. The **Threshold** parameter determines the peaks that will be included into the analysis. Low values (e.g. -20dB) will include low amplitude peaks, which may not always desired because some of these low peaks are perhaps no harmonics. The **Hysteresis** parameter influences the separation of neighbored peaks. The valleys between neighbored peaks must exceed the specified **Hysteresis** parameter (e.g 10dB) if these two peaks should be interpreted as separate harmonics. Due to noise on the spectrogram, it may also be necessary to correct the automatically detected fundamental frequency manually.

Under some circumstances it might happen that the fundamental frequency detection algorithm is disturbed by noise, which can then lead to an underestimated fundamental frequency. This effect can be reduced by specifying a **lower limit** for the fundamental frequency (usually one knows the lowest expected frequency).

peak frequency interpolation: The peak frequency detection on the spectrogram is based on a maximum search on the spectra. In order to increase the precision of the peak frequencies beyond the spectrogram resolution, an interpolation algorithm is used. This parameter determines the number of points used for the interpolation. The option **none** will inhibit the interpolation, which means that the peak frequency resolution is equal to the spectrogram resolution. The option **auto** will select the optimal number of interpolation points for a given bandwidth.

scan amplitude envelope
This option will add the amplitude envelope. In order to get precise amplitude measurements, it is strongly recommended to use the FlatTop window setting on the Spectrogram Parameters dialog box!

scan entire spectrogram
If this option is activated, the entire spectrogram (not only the visible or marked section) will scanned.

automatic update
If this option is activated, the frequency contour scan will be updated each time the user has modified an element separation threshold via one of the spin buttons or the spectrogram selection has been modified. Activate this option to accelerate the process of finding the optimal settings.
export frequency contour

This section allows to export the scanned frequency contour as an ASCII table to other applications. The sound elements are separated by carriage return / line feed (new line) control characters. In case the frequency contour has not been detected properly, it is possible to edit the contour manually within the Graphic Synthesizer window before finally exporting the data.

Copy

Copies the contour into the clipboard.

Save

Saves the contour into a .TXT file.

column

If this option is activated, the samples will be arranged in a single column (each sample in a new row). Otherwise, the samples of an element will be arranged in a single row.

time

This option adds the time stamp to each frequency sample.

The frequency contour and amplitude envelope can alternatively taken from the *.ft (frequency) and *.at (amplitude) ASCII files that are created each time the current arrangement is saved (command File/Save).

Update!

This button will re-calculate the frequency contour with the current settings. The frequency contour will be displayed both on the spectrogram in the spectrogram window and on the separate Graphic Synthesizer window.

OK

The OK button will display the frequency contour in a separate Graphic Synthesizer window. The Scan Frequency Contour window is closed. Use the Update! button for optimizing the settings (the results will be displayed graphically in the spectrogram window).
Remove erased spectrogram sections from waveform

This command will filter out or attenuate the previously erased spectrogram sections from the underlying waveform file. To enable this functionality it is required to activate the option ‘**enable waveform editing**’ on the Spectrogram Parameters dialog box.

First use one of the two eraser cursors to erase undesired signals from the spectrogram display. The subsequent execution of this command will then remove or attenuate these signals also from the .wav file.

There are several settings that influence the specific behavior of the filter operation:

Frequency domain tapering

The **transition interval** determines how soft the transition between the pass and stop band will be. Small intervals may add undesired distortions in the time domain (ringing).

Time domain tapering (time-consuming)

If this option is activated, the tapering operation will also be applied along the time axis, which can reduce artifacts that would otherwise be caused by cutting sound elements along the time axis. Note that this option activates a very time-consuming transformation procedure. So, it should only be activated if sounds have been cut along the time axis.

The **transition interval** will determine how fast the transition between unaffected and erased sections will be on the waveform. Short intervals may add undesired distortions in the frequency domain (broad-band clicks).

The **attenuation** field determines how much the erased spectrogram sections should be attenuated on the waveform. The -100dB option will remove the sounds completely (except if the transition intervals are large compared to the size of the erased sections).

The option **keep DIO** state will retain the content of the least significant bit of each waveform sample that would otherwise be corrupted. Check this option when you use the DIO track functionality of the UltraSoundGate hardware.

Executing this command may take some time, depending on the sample rate, FFT size and duration of the spectrogram. Therefore, it is recommended to limit the spectrogram to the sections that should be edited.
How to use the measurement cursors

The spectrogram window delivers two different types of measurement cursors:

- **Marker mode**: Different markers can be activated at the same time. Markers can be positioned by clicking and dragging.

- **Reticule cursor mode**: The mouse cursor changes into a single reticule while moving through the area of the spectrogram image.

Marker mode

One part of the spectrogram can be marked by clicking on the desired start point and dragging the cursor to the end point. Once a section has been marked this marker can be resized by dragging the margins of the section. The whole marker can be shifted by clicking inside the marked section and dragging it away. The marker can be removed by the menu "Tools/Remove Marker". The parameters of the marker (t1: begin, t2: end, dt: duration) are displayed in the unit seconds on the right of the window. This allows easy measuring of signal duration’s.

For precise determination of signal frequencies there are two types of frequency cursors available.

Frequency cursor

Up to four free moveable cursors can be activated by clicking inside the area between the bottom of the status line and the top of the spectrogram. Then you can drag the cursor into the spectrogram. The cursor can be removed by dragging it back to the top of the spectrogram.

Harmonic frequency cursor

In order to support the determination of the fundamental frequency a special harmonic cursor can be activated in the standard marker mode. This is done by clicking inside the area between the bottom of the upper status line and the top of the spectrogram while the Shift key is pressed. That cursor marks all harmonics of the fundamental cursor frequency. The harmonic cursor can be shifted by dragging any of its harmonics.

Bound frequency cursor

Up to two bound cursors can be activated by clicking inside the area between the left margin of the window and the left margin of the spectrogram. Then you can drag the cursor into the spectrogram. This cursor can be moved only along the
frequencies with the maximal intensities. The cursor can be removed by dragging it back to the left of the spectrogram. Bound cursors allow very easy determination of signal frequencies. When two bound cursors have been activated, the slope between the two points on the spectrogram is displayed on the top right-hand side of the spectrogram. The slope is expressed on Hz/ms or kHz/ms if the sample rate of the sound file is higher than 100 kHz.

Alternatively a single Reticule Cursor can be activated. This cursor replaces the normal mouse cursor when it is inside the area of the spectrogram.

Cursor modes

The standard cursor mode of the spectrogram window allows activating some cursors that are not connected with the mouse cursor. It is possible to display several of these cursors (markers) at the same time.

Standard marker cursor: Activates the standard marker mode.

Alternatively a single reticule cursor can be activated. In this mode, the normal mouse cursor changes into a reticule if it is inside the area of the spectrogram. There are several different reticule cursors available:

Free reticule cursor: Activates a free reticule cursor.

Bound reticule cursor: Activates a cursor, bound to the frequency with maximum intensity.

Magic reticule cursor: Activates a special cursor that can automatically locate peaks or entire elements. See page 158 for details.

There are two special cursors for erasing portions of the spectrogram image:

Large rectangular eraser cursor: in this mode, left clicking and dragging can mark a rectangular section of the spectrogram image. That section can then be erased by the command "Tools"/"Erase marked section" or by pressing the right mouse button. The whole track can be erased by pressing the left and right
mouse button while moving the cursor. Use this eraser mode for deleting larger rectangular regions.

Standard eraser cursor: The mouse cursor will change into an eraser. The shape of the eraser can be selected from the appearing tool set (courthouse, oil paint eraser). The area under the cursor will be deleted once the left mouse button is pressed. The undo button will undo the most recent erasing action. Use this eraser mode for deleting small or filigree regions.

The following three commands add specific frequency cursors in the standard marker mode:

Insert bound frequency cursor
Inserts a bound frequency cursors that moves along the peak frequency.

Insert frequency cursor
Inserts a free-moveable frequency cursor.

Insert harmonic frequency cursor
Inserts a harmonic frequency cursor.

Remove Marker
The current marker in the spectrogram window is removed.

Remove Cursors
Removes all cursors from the spectrogram window.

Erase marked section
Erases the currently marked section of the spectrogram. Use this command to remove unwanted sounds from the spectrogram image.

Move reticule cursor by one pixel / left, right, up, down
These commands are accessible through keyboard shortcuts (e.g. arrow keys) only, which have been defined from Tools/Keyboard Shortcuts and Popup Menu...

Copy cursor value
Copies the current cursor measurement values into the clipboard (or transfers them by DDE).
Copy the marker to the main window
Copies the current marker of the spectrogram window to the main window.

Cursor linkage between Instances
In order to enable quantitative comparisons between different sound files, the measurement cursors of several program instances can be linked. For this purpose, several instances of the SASLab Pro software can be operated at the same time (e.g. by the command File/”New Instance”).

When the desired dialog items are selected and several instances of SASLab Pro are running, the corresponding cursors will move simultaneously in all instances, where this cursor linkage has been activated.

Main window
Marker duration The duration’s of the marked sections will be aligned between instances.

Spectrogram window
Frequency cursors The frequency cursors of the spectrogram window will be aligned.
Marker duration The duration’s of the marked sections in the spectrogram window will be aligned.
Spectrogram contrast The spectrogram contrast will be aligned.

Curve window
X and Y Cursors The X and Y axis cursors will be aligned. Please note, that the type of the one-dimensional transformations should be similar between instances.

Copy these settings to all other instances This option will automatically copy the selections made to all other instances of the SASLab Pro software.

Display amplitude at reticule cursor cross
If this option is activated, the amplitude [dB] at the cursor position is displayed on the spectrogram image close to the cursor cross (for reticule cursors only).
Magic reticule cursor

The magic cursor mode supports searching local frequency peaks interactively. Additionally, entire elements may be detected and their parameters (duration, min, max frequency) can be measured automatically.

The magic cursor mode is activated by the command Tools/Cursors/Magic reticule cursor or by the corresponding button . When the magic cursor is placed over a narrow-band signal structure (e.g. a pure-tone whistle or a clearly separated harmonic component), the peak (the frequency at maximum energy) will be located automatically.

The parameter settings, that influence the behavior of this cursor, can be setup from Tools/Cursors/Magic cursor setup... or the button .

Magic Cursor Setup
This dialog box defines the behavior of the magic reticule cursor.

snap distance : This value determines the distance between the current vertical cursor position and a real peak in the spectrogram, at which the cursor would then snap automatically. This distance is expected in pixels. The resulting frequency interval is shown behind this edit field. If you need to investigate single close-spaced frequency bands, this parameter should be set smaller than the distance between these frequency bands. Larger values will make it easier to locate peaks, because it is then not required to place the cursor so close to the peak.

threshold : This absolute threshold limits the automatic peak detection mechanism to regions, which exceed a certain amplitude. This threshold is expected in dB relative to the full scale (0 dB corresponds to a full-scale or maximum-amplitude signal). When setting this threshold to a low value (e.g. –40 dB) the magic cursor will be able to locate also low peaks. However, especially in noisy recordings, this would lead to peaks within in the noise floor that are out of interest. Therefore, it might be better to use a higher threshold. Higher thresholds may of course prevent locating smaller peaks.

Locate and measure entire elements
It this option is activated, the magic cursor will not only find the peak frequency (and amplitude) at the current (horizontal) cursor position. Additionally, the peak-search will be extended to the preceding and succeeding peaks around the current horizontal cursor position.
By defining appropriate thresholds, this mechanism also allows to locate and measure entire elements. The start and end of each element to be recognized is derived from the amplitude across each potential element. The algorithm starts at the maximum peak amplitude of the element and searches those points, where the amplitude goes below a pre-defined threshold (start/end threshold). The resulting points are assumed to be the start and end of each element. The corresponding frequency measurements (f start, f end, f max, f min) are also taken from that section.

This automatic recognition process will only work satisfying, if the signals to be measured are relatively clearly structured and if they do not contain too much noise or reverberation. The parameter settings made (snap distance, threshold, start/end threshold) will also dramatically influence the success for a given class of signals.

start/end threshold : This threshold determines the begin and end of the automatically recognized elements. In contrast to the other threshold (described at first), this one is related to the maximum peak amplitude of each element. Therefore, 0 dB would correspond to the absolute amplitude of each peak and not to a full-scale signal. Larger values (e.g. –10 dB) would lead to shorter element duration estimates. Lower values (e.g. –20 dB) would provide longer elements.

exported measurements
The following measurements can be exported by clicking the left mouse button. The activated parameters will be copied into the clipboard (and optionally transferred via DDE or saved into a LOG file if the appropriate setting are made from File/Data Export/DDE Parameters / Log-File.

- **t start (absolute)** : The absolute start time of the element in seconds.
- **t max (absolute)** : The absolute time of the peak amplitude of the entire element in seconds.
- **duration** : The duration of the element in seconds.
- **peak amplitude** : The peak amplitude of the entire element in dB (relative to full-scale).
- **peak frequency** : The frequency at the point of the maximum amplitude of the entire element in Hz.
- **f start** : The frequency at the start of the element in Hz.
- **f end** : The frequency at the end of the element in Hz.
- **f max** : The maximum peak frequency over the entire element in Hz.
- **f min** : The minimum peak frequency over the entire element in Hz.

Please note, that the start and end of the elements are derived from the spectrogram, which slightly over-estimates the duration of sound structures. This over-estimation is caused by the smearing effect of the FFT window. This effect
will become significant in larger overlap settings. The amount of over-estimation equals about half the duration of the FFT window (0.5 * FFT length / sampling rate). It also depends on the window type and the frame size.

Copy headings
This button copies an ASCII description of the currently activated measurements, which may help in identifying the exported measurements.

mark detected element with a double cross
If this option is activated, the recognized elements will be marked with two vertical and horizontal thread-crosses showing both start/end and the maximum/minimum frequencies. Otherwise, the element is marked with an enclosing rectangle.

peak freq. Interpol.
The peak frequency detection in the spectrogram is based on a maximum search on the spectra. In order to increase the precision of the peak frequencies beyond the spectrogram resolution, an interpolation algorithm is used. This parameter determines the number of points used for interpolation. The option none will inhibit the interpolation, which means, that the peak frequency resolution is equal to the spectrogram resolution. The option auto will select the optimal number of interpolation points for a given bandwidth. This interpolation will not be applied to f start, f end, f max and f min (only to peak frequency).
Labels >

Labeling

The labeling feature allows adding labels to sound files. A label consists of a short text (max 30 characters), a time stamp and a frequency stamp. Special section labels have two time stamps (start and end of section) and no frequency stamp. Labels are stored either directly into .wav file header or into separate data bank files. The file format of these data bank files is the ASCII file format with *.LBL extension. The data fields (coordinates and label text) are separated by tabulator stop characters. Data sets (single labels) are separated by CR/LF. This file format supports easy import into other applications like spreadsheets for further statistic investigation. Therefore labels can also be used for measuring and data logging purposes.

There are several display format options for labels:

Standard labels (time/frequency)
Alignment of the label text: left | center | right
Style of label: text only | arrow | arrow & frame

Section labels (start/end time)
Vertical location of the label: layer1 | layer2 | layer3 | total
The different layers allow to input overlapped or hierarchic labels. The total option will draw large section boundaries occupying the total vertical display space.

In order to accelerate entering frequently-used text strings, it is possible to define text modules from the main window command File/Rename by text module / Define text module that will also appear on the Text modules menu of the Label dialog box (which can be accessed from the keyboard by pressing the Alt and then the up/down arrow keys).

Existing labels can be edited by right clicking at the label. In the appearing dialog box the label text, style and coordinates can be modified. The Copy button can be used to copy the coordinates into the clipboard. In section labels the Play button allows to playback the sound file section.

The proceed to next option will change the function of the OK button in such a way that the Label edit box is not closed and instead its focus is set to the Next label, which can accelerate naming or renaming a whole set of labels. When the focus of the Label edit box is switched to the next label, the corresponding spectrogram view will also be moved to that next label. In addition to that, the edit box will automatically proceed to the next label once one of the user-defined Text modules has been picked from the menu bar.
Labels can be moved by left clicking at the label and dragging while the left mouse button is pressed. Section labels can also be resized by left clicking.

Right-clicking at a label while the Shift key is pressed will delete the label immediately.

Insert label
Inserts a standard label at the cursor position (time and frequency in the spectrogram window; time only in the main and curve window). If the label is inserted in the main or curve window, the frequency coordinate of the label is set to -1.0, which means, that the frequency is not specified.

Insert section label
Inserts a section label at the cursor position (time and frequency in the spectrogram window; time only in the main and curve window). In contrast to the standard label, a section label marks a time section by its start and end time coordinates.

Insert section label from marker
Inserts a section label at the current marked section. In contrast to the standard label, a section label marks a time section by its start and end time coordinates.

Section label grid...
This dialog box allows activating an additional time-axis grid for each section label. There are two grid options:
- **fixed interval duration**: The distance between the grid ticks will be equal to the specified time parameter. This option may be useful in order to get a more precise visual impression of the section durations.
- **fixed interval count**: There will be a fixed number of grid ticks for each section, independently of the section duration. The specified number of ticks will divide the section label into equally spaced sub-sections. This option may be used, if investigations have to be made at time-standardized locations (e.g. for characterizing whale signature whistles).

The two options can’t be combined. To disable the section grid at all, none of the two options must be checked.

Label settings...
This dialog box shows the current label settings and allows managing label files.

file name
Labels and titles are saved in separate *.LBL files. The file name of the currently selected *.LBL file is displayed here.
lock labels
If this option is checked, the existing labels cannot be moved or edited. Activating this option may be useful to prevent unwanted modifications of labels.

auto save
This listbox allows selecting the desired save/load option for labels and titles, when a new sound file is opened or saved.

no saving: The labels are not saved and loaded automatically.
into extra .lbl file: If this option is selected, the corresponding *.lbl files are loaded or saved automatically when a sound file is loaded or saved. When a sound file is saved, the labels and the title are saved in a *.LBL file with the same file name (except extension) and path as the sound file. When that sound file is opened again, the corresponding *.LBL is opened automatically. This feature allows simple label file assignment to diverse sound files.
Into .wav files: This option saves and loads the labels directly into/from the current .wav file.

title
This edit field allows inputting a title or a headline for the entire label file. That title can be printed together with waveforms and spectrograms (see Export-Parameters).

hide text
If this option is checked, the label texts will be hidden. Activating this option may be useful in situations, where many labels would overlap each other.

The large list box in the middle of the dialog box lists all labels with their coordinates (time, frequency), label texts and formats. Single or several labels at once can be edited from the bottom line. To do this first select the desired lines in the list and make the modifications in the bottom line. Use the Enter button to enter the changes into the list.

Display
Moves the display area of the window, from which the Label settings dialog box was launched, to the marked label. Alternatively, the label can be displayed by double-clicking at the desired label on the list box.

Open...
Opens an existent label file.

Save
Saves the current labels under the currently selected file name.
Save As...
Saves the current labels into a new file.

Copy
Copies the currently selected labels into the clipboard.

Select all
Selects all labels in the list.

Select...
Launches a dialog box that allows selecting the labels on the list by their label text strings.

Sort by: time, text, layer
Sorts the labels by time and replaces the label text by a running number. If the dialog box option “label offset #” is checked, the renumbering procedure will start with the specified number rather than 1.

Delete
Deletes the currently selected labels.

Enter
Enters the modifications made in the bottom line. Alternatively the Enter key of the keyboard can be used.

Label statistics...

This dialog box displays some statistics on the temporal properties of the labels. Min, max and mean of the intervals between the labels are calculated from all kind of labels (both single-point and section labels), while the durations and the breaks can only be determined for section labels. The break is measured from the end to the start of the next section label. The measurements on section labels will only be valid as long as they do not overlap. The measurements table can be exported either via the clipboard (Copy button) or via a text file (Save button).
Additionally, a few more detailed diagrams can be selected from the diagram list box:

histogram of intervals
histogram of durations
histogram of breaks
pulse density versus time

This option counts the number of labels (both single-point and section labels) that occur within each time frame (frame size = resolution).

duty cycle versus time

This option determines the duty cycles (the normalized “on” time) for each time frame (frame size = resolution). For instance, if there were a single section label that lasts for 20 ms and falls entirely into a single time frame (resolution = 100 ms), then the duty cycle would be 20% in the time interval where the label is. All other intervals were zero. In order to get smooth results, the resolution value should be significantly larger than the durations of the labels. The duty cycle can only be determined for section labels (single-point labels have no duration that could be analyzed).

Use the >> button to display the selected diagram (OK will instead close the dialog box and also launch the selected diagram).

The resolution edit box determines the temporal resolution of the diagrams.

Export label data...

See page 101.

Automatic parameter measurements >

In the spectrogram window it is possible to measure time and frequency parameters automatically. The spectrogram is scanned and single calls or song elements are separated. That element detection is done by threshold comparison and a hold-time mechanism. Then various parameters at certain locations within each of the detected elements are determined. These locations can be start, end, center or the point of maximum amplitude. At these locations peak frequency, amplitude at peak frequency, bandwidth, quartiles or number of harmonics (peaks) can be determined. Additionally, these frequency parameters may be derived from the average spectrum of the entire element. All measured parameters will be displayed
graphically within the spectrogram. This allows tracking the operation of the automatic parameter measurements and simplifies the process of finding the best settings (thresholds and hold time). Optionally the measured parameters can be displayed in a separated text window.

The settings for these measurements are defined on the command

"Tools"/"Automatic parameter measurements setup..."

Enable automatic measurements: Check this option to enable the automatic parameter measurement.

Compute parameters from entire spectrogram: If this option is activated, the measurements will be computed from the entire spectrogram file. Otherwise, only the currently visible or marked section will be analyzed. When this option is activated, it is necessary to use the **OK** or **Update!** button for updating the measurement results after modifying the settings.

Automatic update: If this option is activated, the parameter measurement display will be updated each time the spectrogram window is redrawn. Otherwise the measurements are only displayed and updated when the **OK** or the **Update!** button is pressed. Note that the complete automatic update is suppressed if the above option **Compute parameters from entire spectrogram** is activated.

Update Pressing this button will recalculate and update the Automatic Parameter Measurements displays without leaving the setup dialog box. Use this button to quickly check the current settings.

Copy results Copies the measurements into the clipboard (see also **Copy parameter measurement values**).

Add filename This option adds the name of the underlying soundfile to the report table.

Show numeric results If this option is checked, the results will be displayed in a separated display window.

Statistics

Enable If this option is activated, statistics on the automatic parameter measurements will be shown according to the settings made in the **Automatic Parameter Measurements Statistics** dialog box. See page 188.
Settings...
This button launches the *Automatic Parameter Measurements Statistics* dialog box. See page 188.

Element separation

Element separation (segmentation) can either be accomplished by an automatic threshold or spectral property based element detecting algorithm or manually by marking the desired elements by section labels.

automatic (single threshold) Select this option, if simple automatic threshold-based element separation is desired. There is only one single threshold for both element separation and element start/end locations. This option is useful, when the single elements have similar amplitudes.

automatic (two thresholds) Select this option, if automatic threshold-based element separation is desired and the single elements have different amplitudes. An additional *start/end threshold* is used to determine both start and end of the element detected by the primary *Threshold*. The option *monotonic decreasing* will accept only monotonously decreasing frequency courses in an element, which can help rejecting echoes in bat calls.

automatic (three thresholds) This option is very similar to the above *two thresholds* option, except that two separate thresholds are being used for detecting the start and the end of each element. This option might be useful for detecting bat echolocation sweeps that start softly at high frequencies and end with a reverberation tail. Due to strong reverberation tails, the *two thresholds* option may prevent to detect the start of the calls precisely. The *three thresholds* mode can be adjusted in such a way (a low threshold for the start and a higher threshold for the end) that reverberated calls can be detected more accurately.

Threshold: If this threshold is exceeded, the start of a new element is registered. When the signal goes below that threshold for at least the *Hold time*, the end of that element is registered. In order to find the best threshold settings for the two or three thresholds mode, the single threshold mode should be selected first. This would allow to find an optimal setting for this primary threshold. The threshold is correct, once all elements are recognized regardless whether the start and end points are correct. The secondary *start/end threshold* can then be found after switching into the two thresholds mode. The *show threshold* option allows adjusting the threshold graphically by dragging its visual representation.

start/end threshold: This additional threshold is only valid for the two-thresholds element separation mode. In this mode, for each element exceeding the primary *Threshold*, the maximum amplitude is determined. The start and end of the element are those points, where the amplitude goes below the start/end threshold relative to the element maximum (for at least the *hold-time*). In this way,
the start and end of elements with different amplitudes will be recognized more precisely. The threshold should be set to about \(-20 \ldots -10\) dB, depending on the structure of the elements. In recordings with high background noise, this secondary threshold should not be set too low. The + and − buttons can be used to find the best threshold setting incrementally.

relative to maximum: If this option is checked, the threshold comparison is referenced to the most intensive point of the spectrogram. Otherwise, the threshold value is interpreted as an absolute value related to full scale (0 dB corresponds to full scale = 1 V peak amplitude).

show threshold: This option activates a graphic representation of the element separation threshold, which helps to adjust the threshold.

total energy: If this option is activated, the threshold comparison is based on the root mean square (total energy) of the spectra. Otherwise the peak amplitudes of the spectra are compared. The total energy option should be activated for analyzing multi-harmonic or noisy sounds because the peak amplitude is often too low for a save element recognition.

Interactively (section labels) Select this option, if manual element separation by section labels is desired. In this case each element to be measured must be marked by a section label (command ‘Tools’/’Labels’/’Insert section label’). This type of element separation may be useful for noisy signals, where automatic detection is not satisfying. However, in many cases it may be useful to first use the automatic separation and applying the command ‘Copy detected elements into section labels’. These automatically scanned labels could then be modified manually to match those elements, where the automatic process failed. The option **number labels automatically** will replace the label titles by the number of the corresponding element. If the spectrogram is printed later, these numbers will appear on the printout as references.

automatic (whistle tracking) This element separation method is useful for detecting soft whistle-like sounds in noisy sound recordings (certainly for analyzing USV’s by laboratory mice and rats). The implemented algorithm searches for steady signals having a relatively stable (peak) frequency course without rapid frequency modulations. The amount of frequency modulation that should be tolerated can be selected from the edit field **max change.** It is the tolerated maximum change of the peak frequency between two consecutive time bins on the spectrogram, expressed as the number of pixels on the spectrogram (frequency bins). This setting therefore depends on the currently selected spectrogram parameters (FFT length and overlap) and should be set to a value between 1 and 4 pixels (depending on the time and frequency resolution of the spectrogram). For best results, this parameter should be set to the smallest possible value that still recognizes all the elements to be detected. The “whistles” button in
the “Presets” section on the “Automatic Parameter measurements setup” dialog box provides appropriate settings to start with.

The **slope** option allows specifying the minimum and maximum frequency change (slope) independently, making it possible to detect also frequency-modulated calls. The **minimum duration** setting rejects any whistles that are shorter than the specified duration. In order to prevent false positive detections (caused by noise), this value should be as large as possible (but shorter than the sounds you are looking for). It is recommended to set the **Hold time** parameter temporarily to zero while optimizing the **max change** and **minimum duration** settings. The option **show trace** will indicate the peak frequency at each time bin that is being used by the whistle tracking algorithm. The **monotonic** option will only accept monotonically rising or falling peak frequency shapes, which can improve the efficiency of the algorithm in distinguishing whistle-like calls from noise. Unlike the other element separation options, the whistle tracking algorithm itself does not use level thresholds. Nevertheless it is still possible to filter out unwanted soft calls or noise by activating the option “Reject if peak ampl. < xxx dB” located at the bottom of the dialog box.

![Principle of the whistle tracking mechanism](image)

In case there is low-frequency noise or a DC offset present in a recording, the whistle tracking mechanism may fail to properly detect soft vocalizations. This problem can be fixed by limiting the frequency range of the spectral analysis from the spectrogram window command **Display/Cut-Off Frequencies...** (enter here a high pass frequency higher than zero in order to exclude the disturbing components).
automatic (spectral entropy) This element separation method employs the
Wiener Entropy that can be used to detect tonal vocalizations in noisy recordings.
The Wiener Entropy (spectral flatness) is calculated by dividing the geometric
mean of the spectrum by the arithmetic mean of the spectrum and ranges
theoretically from 0 (pure tone signal) to 1 (white noise). An element is detected
each time when the entropy falls below the defined max entropy threshold. In
order to exclude unwanted short noise signals the min duration threshold on the
Post filter on elements section can be used (set the max entropy threshold to 1). Use the show trace option to visualize the trace of the entropy.

automatic (spectral bandwidth) This element separation method employs a
spectral bandwidth parameter that can be used to detect tonal vocalizations in noisy
recordings. The spectral bandwidth parameter is calculated by counting the most
intense number of frequency bins of the spectrum that represent a user-defined
fraction of the total energy of the spectrum. An element is detected each time when
the spectral bandwidth falls below the defined maximum number of
frequency bins threshold. Note that the frequency bins threshold will be affected
by the analysis bandwidth of the FFT that is determined by the FFT size and the
windows type. In order to exclude unwanted short noise signals the min duration
threshold on the Post filter on elements section can be used (set the max
entropy threshold to 1). Use the show trace option to visualize the trace of the spectral bandwidth.

The edit> button creates section labels from the automatically detected elements
and switches to the interactive element separation mode. In this way it is possible
to edit the automatically detected elements, making it possible to label undetected
elements by pressing the Shift key and left-clicking at the desired start point in the
upper third of the spectrogram and dragging the mouse cursor to the end point. The
section labels can be resized and shifted by the mouse cursor or deleted by right-
clicking at them.

Hold time: In order to prevent cutting up of integral elements, a hold time can be
specified. If the amplitude of the spectrogram goes below the threshold for less
than this hold time, no new element is assumed. That option allows treating
complex elements with short silent sections as integral units. This parameter should
be set carefully in order to get a save element detection.

In order to exclude low frequency disturbance signals, an appropriate cut-off
frequency can be specified in the menu Display/lower Cut-Off Frequency.
Post filter on elements

enable This option activates two additional filter criteria that can reject unwanted sound elements that are shorter than the specified limit and/or that have a broad frequency spectrum. This filter is certainly useful for eliminating short (broad-band) cracks caused by the activity (movement) of caged animals. Note that this option should be disabled during the process of optimizing the element separation (adjusting thresholds and hold time), because this filter might additionally disguise the operation of the primary element separation/detection mechanism.

min duration: Elements shorter than this limit will be rejected.

max entropy: Elements whose minimum entropy is higher than this limit (weak tonal structure) will be rejected. Tonal (whistle-like sounds) usually have a low entropy (<0.3), while broad-band (noisy) sounds have higher entropies (>0.4). In the process of optimizing the entropy threshold settings, it might be useful to temporarily activate the *Spectrum-based parameter entropy* at Min param. of entire element to get an idea of the entropy properties of both the wanted and unwanted sounds.

Temporal parameters

The temporal parameters are derived from the spectrogram.

Duration of element: The duration of each element from start to end is measured.

Interval: The time duration from the start of the preceding to the start of the current element is measured.

Break: The silent interval from the end of the preceding to the start of the current element is measured.

Distance from start to max: The distance from start to the location of the maximum amplitude is measured.

Start/end time: The start and end time of each element is taken.

The additional option **absolute** will add the absolute time offset to the start/end time. This absolute time offset is referenced to the start of the underlying sound file. If the sound files have been recorded by Avisoft-RECORDER, then the time offset is referenced to the start of the monitoring. In this way it is possible to get a consistent time scale over subsequent (numbered) files.

Date The real-time date and time at the start of the element is copied into the results listing. This information is derived from the file creation date.

more... > constant frequency (CF) section duration: The duration of the constant frequency (CF) section of bat calls is measured. In order to get it work, the location of the CF section (start, middle or end) within the bat call must
be selected and the **frequency change threshold** that should identify a CF section must be specified.

Sub-elements
The sub-element detection facility supports counting and measuring of elements within phrases (groups of closely spaced elements), that are clearly separated in time. This option will only work if the intervals between the consecutive sub-elements are shorter than the intervals between the high-order elements (phrases). The sub-element detection is based on a second hold-time, which has to be set to a value shorter than the interval between sub-elements. The element separation hold-time has to be set to a value longer than these sub-element intervals and shorter than the interval between the high-order elements.

1 and 2 are the high-order elements (phrases) and 1:1, 1:2, 1:3 and 2:1, 2:2 are the sub-elements. In this example the element separation hold-time was set to 0.1 s and the sub-element hold-time to 0.01s.

Number of elements : The number of sub-elements within an element (phrase).

Element rate : The average rate of sub-elements within an element (phases). The unit of the element rate is 1 second.

Hold time : This hold-time should be set to a value smaller than the intervals between the consecutive (sub-) elements.

Note that the sub-elements option is not available with the element separation method “automatic (whistle tracking)”. Use here instead the group analysis tool (“Group. Anal.”).

Waveform parameters
The waveform parameters are derived from the .wav file waveform and are computed from the entire element.

rms : The root mean square either in 1 Volt or dB units in case the dB option is activated.

energy : The energy of the element in 1 Volt^2*sec units.
peak-to-peak ampl. : The peak-to-peak amplitude in 1 Volt units.

Group Anal.
The group analysis option provides measurements on the temporal (meta) structure of subsequent sound elements that form groups (or phrases) that are separated by significant breaks. In contrast to the *Sub-elements* option, this option also provides detailed measurements on the elements that form the group.

enable This option activates the group analysis mode.
The edit field *ms* defines the group hold time in milliseconds. Sound elements that are closer than this duration will be grouped together. So, this group hold time parameter should be larger than the longest break between the elements within the groups and smaller than the silent breaks between the groups to be analyzed.

Settings… This button launches the *Group Analysis Settings* dialog that selects the parameters to be measured:

Group Properties
- **duration of group**
- **interval between groups** (measured between consecutive group starts)
- **absolute time of group start and end**
- **element count** (total number of element / group)
- **group index** (running group number)
- **min/max parameters of all group elements** If the “Min/Max param. of entire element” options in the section “Location of measurements” have been activated, this option will determine these parameters also over all elements in each group.

Element Properties
- **element index** (running element number within the group)
- **relative time stamp** (time interval from the group start to the start of the current element)

separate groups by CR/LF characters : This option inserts an empty row after each group (in the exported table).

Spectrum-based parameters
The spectrum-based parameters are derived directly from the spectra of the spectrogram.
Peak frequency: The frequency of the maximum amplitude of the spectrum.
Interpolation The peak frequency detection in the spectrogram window is based on a maximum search on the spectra. In order to increase the precision of the peak frequencies beyond the spectrogram resolution, an interpolation algorithm is used. This parameter determines the number of points used for interpolation. The option none will inhibit the interpolation, which means, that the peak frequency resolution is equal to the spectrogram resolution. The option auto will select the optimal number of interpolation points for a given bandwidth.
Fundamental frequency: This fundamental frequency detection option is based on a peak search on the spectra of the spectrogram. The implemented algorithm will detect the fundamental, even if the fundamental itself or single harmonics are very weak or not present. In contrast to the Peak frequency option, which returns the frequency at maximum amplitude, this option is immune against varying amplitudes of harmonics in complex harmonic signals. See the description of Number of peaks above and Frequencies of peaks for details on the peak detection mechanism. Threshold and hysteresis for peak detection for the fundamental frequency are the same as for the peak frequency search. Therefore, these parameters can be edited from there. In complex (noisy) signals it may be useful to first setup the peak detection algorithm using the Number of peaks above option. If all the peaks are detected properly, that option can be disabled and the Fundamental frequency option can be activated.

Under some circumstances it might happen that the fundamental frequency detection algorithm is disturbed by noise, which can then lead to an underestimated fundamental frequency. This effect can be reduced by specifying a lower limit for the fundamental frequency (usually one knows the lowest expected frequency). The lower limit can be entered into the edit box labeled “>”

A fundamental frequency result of 0 Hz indicates that the detection algorithm could not identify a valid harmonic structure (the detected peaks are not multiples of a potential fundamental). In that case try to modify the peak search Hysteresis or erase the noise components that might prevent a proper processing.

The option ACF activates the alternative autocorrelation method for the fundamental frequency determination. Note that the autocorrelation method will only work satisfying for low fundamentals (in relation to the sample rate). The results will become more and more imprecise at higher frequencies.

Peak amplitude: The amplitude at the peak frequency (maximum of the spectrum = peak amplitude).

Min frequency: That frequency, where the amplitude goes first below the threshold (when we move from the maximum down to low frequencies), if the total option is not activated. If the total option is activated, it is the frequency, where the amplitude goes last below the threshold. See also illustrations below.

Max frequency: That frequency, where the amplitude goes first below the threshold (when we move from the maximum up to high frequencies), if the total option is not activated. If the total option is activated, it is the frequency, where the amplitude goes last below the threshold. See also illustrations below.

total: This option determines the way how min, max and bandwidth is calculated. If the total option is activated, the bandwidth will cover all peaks that exceed the
threshold. Otherwise, the bandwidth will only cover the maximum peak exceeding the threshold.

Min and Max frequency detection with the **total** option activated.

Min and Max frequency detection with the **total** option not activated.

Bandwidth: Difference between Max frequency and Min frequency.

Threshold: This threshold is used for the bandwidth, min and max frequency calculation. The threshold is referenced to the peak amplitude. An additional threshold can be activated from the associated checkbox below the primary threshold edit field:

![Threshold](image)

Quartiles: These parameters characterize the distribution of energy across the spectrum. The spectrum will be integrated and divided into four equal parts. The three frequencies dividing the magnitude spectrum into four parts are called quartiles:

- **Quartile 25%**: below this frequency is 25% of the total energy.
- **Quartile 50%**: The mean frequency of the spectrum. Below this frequency is 50% of the total energy.
- **Quartile 75%**: Below this frequency is 75% of the total energy.

The distance between quartile 75% and quartile 25% is a measure of the pureness of the sound.
Entropy: The Wiener entropy parameter allows to quantify the randomness (or pureness) of sounds. It is the ratio of the geometric mean to the arithmetic mean of the spectrum. This parameter is (theoretically) zero for pure-tone signals and one for random noise. Because of the properties of the short-time FFT (its analysis bandwidth is always greater than zero), the value will not be exactly zero for a pure tone signal. The absolute results will depend on FFT length, frame size and window type. Therefore, the entropy parameter should only be used for comparisons among spectrograms generated using the same spectrogram parameter settings.

Harmonic-to-noise ratio: The harmonic-to-noise (HNR) parameter quantifies the ratio of harmonic to nonharmonic energy. The noise floor of the spectrum is estimated by calculating the moving average of the spectrum. The maximum distance between the original spectrum and the filtered spectrum (expressed in dB) is taken as the HNR measure. The width of the averaging window can be defined by entering the number of frequency bins. Note that the HNR estimation is affected by the FFT size, the evaluation window type and the number of the averaging frequency bins.

Number of peaks above dB: The number of peaks (harmonics) exceeding this threshold is counted. The threshold is related to the maximum peak.

Frequencies of peaks: The frequency of each peak is determined.

Amplitudes of peaks: The amplitudes of each peak are determined.

max peak entries: This value limits the maximum number of peaks in the output file. This value should be set to the expected number of peaks.

Hysteresis for peak detection: This value is used for peak detection. Only peaks that are higher than the preceding valley plus this hysteresis will be detected as peaks.
uniform parameters for all locations

If this option is activated, the selected “Spectrum-based parameters” will be taken at all selected “Locations of measurements”. Otherwise, the spectrum-based parameters can be defined separately for each location, which would allow to exclude unwanted combinations of certain parameters and locations. The list box “Location” allows to navigate through the various locations.

Locations of measurements

The parameters listed above can be computed at different locations within the element:
Start of element: Spectrum at t1 plus displacement specified in milliseconds.
End of element: Spectrum at t2 minus displacement specified in milliseconds.
Center of element: Spectrum at (t1+t2)/2.
Maximum amplitude of element: Spectrum at the location of the maximum amplitude.
Max spectrum of entire element: The parameters are derived from the maximum spectrum (peakhold) of the entire element.
Mean spectrum of entire element: The parameters are derived from the averaged spectrum of the entire element.

The example below illustrates the differences between the options Mean and Max spectrum of entire element. Assuming a syllable consisting of a constant frequency and a frequency-modulated part having a constant amplitude throughout its duration, the mean spectrum would be dominated by the constant frequency part (most of the energy is concentrated at the constant frequency). Instead, the max spectrum would have a flat top across the entire frequency range of the syllable, regardless of the duration of the constant frequency section.
Min param. of entire element: The parameters are internally computed for all instantaneous spectra between the start and the end of each element. The minimum of the measurement values throughout all these spectra is determined. For instance, when applied to the peak frequency, the "min param of entire element" will return the lowest peak frequency within each element. Similarly, when applied to the entropy, it will return the lowest entropy that occurred between the start and end of each element. The option t will additionally measure the location of the minimum within the element.

Max param. of entire element: The parameters are internally computed for all instantaneous spectra between the start and the end of each element. The maximum of the measurement values throughout all these spectra is determined. For instance, when applied to the peak frequency, the "max param of entire element" will return the highest peak frequency within each element. Similarly, when applied to the entropy, it will return the maximum entropy that occurred between the start and end of each element. The option t will additionally measure the location of the maximum within the element.

Mean param. of entire element: The parameters are internally computed for all instantaneous spectra between the start and the end of each element. The mean value of all these individual measurement values is calculated and put out.
Relative stddev of entire element: The parameters are internally computed for all spectra between the start and the end of each element and the relative standard deviation ($= \text{standard deviation} / \text{mean value}$) of these parameters is calculated. This parameter can be used for instance for quantifying frequency or amplitude modulation.

Regular intervals of: The parameters are computed repeatedly at regular intervals within each element. The interval is specified in milliseconds. The time resolution of the spectrogram must be adapted to the desired measurement interval. The maximum number of samples within each element will be limited to the specified **max entries**.

Regular intervals of duration / n: The parameters are computed repeatedly at regular intervals within each element. The number of measurements taken per element is specified here. This means, that the time interval will depend on the duration of each element.

more... : This button launches a separate dialog box for selecting additional parameters:

Time derivative of entire element This section provides parameters that are based on the time derivative of the spectrum-based parameters. Currently, only the Peak frequency and the Fundamental freq. are supported.

sum : The sum (integral) of the time derivative over the entire element is calculated (corresponds to the frequency change from the start to the end).

mean : The mean of the time derivative over the entire element is calculated. If the option **calculate slope (kHz/ms)** is checked, this measure represents the average slope of the element expressed in kHz/ms.

min : The minimum of the time derivative over the entire element is calculated. If the option **use absolute values** is checked, the minimum absolute value is determined. Otherwise, the largest negative (descending) change will be provided. If the option **calculate slope (kHz/ms)** is checked, the change is expressed in kHz and referenced to a time interval of 1.0 ms (unit kHz/ms). The option **t** provides the time offset where the minimum was detected (expressed in seconds relative to the start of the element) and the option **f** similarly provides the corresponding frequency.

max : The maximum of the time derivative over the entire element is calculated. If the option **use absolute values** is checked, the maximum absolute value is...
determined. Otherwise, the largest positive (ascending) change will be provided. If the option *calculate slope (kHz/ms)* is checked, the change is expressed in kHz and referenced to a time interval of 1.0 ms (unit kHz/ms). The option \(t\) provides the time offset where the maximum was detected (expressed in seconds relative to the start of the element) and the option \(f\) similarly provides the corresponding frequency.

use absolute values: If activated, the *min* and *max* will be calculated from the absolute values of the time derivative.

calculate slope (kHz/ms): If activated, the *mean*, *min* and *max* are expressed in kHz and referenced to a time period of 1.0 ms (the frequency change between the spectrogram time bins is divided by the time interval between those two bins).

distance for calculating differences: *xxx time bins*: This setting determines the distance between the spectrogram time bins from which the frequency change is calculated. Due to the limited frequency resolution of the spectrogram, it is sometimes (depending on the FFT length and overlap settings) required to increase this distance in order to get meaningful results for signals that exhibit a slow frequency change. Note that a large distance value will prevent to calculate the time derivative at the margins of the element. If one is interested in the amount of frequency change in rapid frequency jumps, the distance should be set sufficiently high and the option *calculate slope (kHz/ms)* must be deactivated in order to measure the frequency difference properly.

second time derivative: This section allows to analyze the second time derivative in order to localize reversal points within the frequency contour. The mechanism is similar to the first time derivative described above.

limit the analysis to the final xx % of the element: If activated, the time derivative analysis will be limited to the selected final percentage of each element. In conjunction with the max \(f\) option and the 40% setting, it is possible to measure the “characteristic frequency” (frequency of the call at its lowest slope toward the end of the call), which is commonly used for identifying bat species.

show time derivative plots: This option displays the time derivative function from which the above parameters are calculated.

Reject if peak ampl. < … dB When this option is activated, the spectrum-based parameters will be rejected at those locations where the peak amplitude of the corresponding spectrum is lower than the specified threshold. If the rejection threshold has been adjusted properly, this option can certainly improve the
reliability of the parameters *peak freq(minentire)* and *peak freq(maxentire)* in sound elements that exhibit short silent breaks (which would otherwise cause wrong results).

The unit of all time-parameters is seconds. The unit of the frequency parameters is Hz.

Exclude rejected elements from results table If activated, the elements rejected by the above option will be excluded completely from the results table. Otherwise, they will still appear on that list.

Derived element-based parameters

In order to extend the classification facilities it is possible to derive more complex parameters from the original measurements for each detected element. A common task is to compare peak frequencies at different locations (start and end), which allows distinguishing between upward and downward frequency modulated elements.

Up to two derived parameters can be activated (**derived parameter #1** and **#2**). The derived parameters are each computed from two parameters (including 0 and a constant value). The parameter selected on the second line is either subtracted from (+), divided by (/), added to (+) or multiplied by (*) the one specified on the first line. The + option additionally allows to divide the result by two (option /2) in order to provide the mean value.

If the option **divide by duration** is activated, the difference of the two parameters is divided by the duration of the element. This may be useful if you are interested in measuring the rising velocity [Hz/s] of frequency-modulated elements (select the *peak freq* parameter and *start* versus *end* location).

If the option **absolute value** is activated, the absolute value of the difference will be taken. The **name** edit field defines the name of the derived parameter that is displayed on the results table.

Note that several combinations of parameters and locations will not make sense (e.g. subtracting time parameters from frequency or class parameters). So it is up to the user to select meaningful combinations.

Show graphic results: If this option is activated, the results of the spectral measurements will be displayed on the spectrogram.

add filename : If activated, the name of the current sound file will be added to the results list. The related option **each row** will add the filename to every row –
otherwise it will only be added to the first (element) row. The option with path will include the entire pathname.

Presets

whistles: selects appropriate default settings for pure-tone, whistle-like vocalizations

barks: selects appropriate default settings for noisy barks

Classification

Enable

If this option is activated, a classification of detected will be made according to the settings made in the Classification Settings dialog box. See page 184.

Settings...

This button launches the Classification Settings dialog box. See page 184.

Response

This button launches the Automatic Response Settings dialog box. See page 195.

Classification

Based on the measured parameters, the detected sound elements can also be classified automatically. For this purpose, a set of element classes can be defined.

There are two classification methods available:

Axis-parallel thresholds

A class is represented by one parameter interval for each of the activated parameters. If a detected element satisfies all the parameter criterions of one of these classes, this element will be associated to that particular class.

Linear discriminant analysis

For each pre-defined class a linear discrimination function score is computed:

\[S_i = c_i + w_{i1}x_1 + w_{i2}x_2 + \ldots + w_{im}x_m \]

In this formula, the subscript \(i \) denotes the respective class; the subscripts \(1, 2, \ldots, m \) denote the \(m \) parameters; \(c_i \) is a constant for the \(i \)'th group, \(w_{ij} \) is the weight for the \(j \)'th parameters in the computation of the classification score for the \(i \)'th group; \(x_j \) is the observed value for the respective case for the \(j \)'th variable. \(S_i \) is the resultant classification score. The maximum classification score \(S_i \) will determine the class associated to the element.
Both classification mechanisms may be used for note type classification or species discrimination. The number of elements associated to each class can be counted automatically for statistics purposes.

Classification Settings

This dialog box allows defining the classes for the classification process.

Class
This combo box selects the class to be defined. Each class is identified by its name listed in this field.

add class
Use this button to add a new class to the configuration. The title of a class can have up to 30 characters.

rename
Use this button to rename the selected class.

delete
Use this button to remove the selected class from the configuration.

Location
This combo box selects the location of measurements to be edited. The list contains all locations activated in the Automatic Parameter Measurements setup dialog box (except Regular intervals of, which is not available for classification).

The parameter list below the Location combo box shows all activated parameters (except Interpulse interval, Absolute time, Frequencies of peaks and Amplitude of peaks, which are not available for classification).

For the **axis-parallel thresholds** method:
The edit fields below from and to define the value range limits, which should be specified for each class and each location. The unit and scale of these values is the same as in the numeric Automatic Parameter Measurements display window (1s, 1Hz or 1dB). If you don’t enter any value into a field, the associated parameter comparison will be ignored (don’t care). If there is more than one parameter activated, all of the specified criterions must be satisfied to sort an element into this class (logic AND combination). If you need an OR combination, an additional class with the same title could be created.
For the \textit{discriminant function} mode:
The edit fields below \textbf{weight} define the weights for each parameter in the classification function.

\section*{Copy settings}
This button copies the current classification settings for all classes into the clipboard (in TAB-delimited ASCII format). This settings listing could be pasted from a spreadsheet application to see an overview of the entire settings.

\section*{Save}
This button saves the current classification settings for all classes into a *.cls file (TAB-delimited ASCII format).

\section*{Open}
Opens a previously saved *.cls file. If there are parameters in the loaded file, which are not active in the current settings of the Automatic Parameter Measurements, these parameters will be activated automatically. The *.cls files could be edited manually (e.g. in Excel). However, the headline on the first row should not be altered. The HT delimiters between the data fields must be preserved. Additional rows may be added. The Open command can also be invoked by drag&drop.

\section*{Import}
This command is equivalent to the \textit{Open} command, except that the parameters, stored in the *.cls file, will not be activated automatically. In other words, the \textit{Import} command only takes those parameters from the file that have already activated in the current configuration. The Import command can also be invoked by drag&drop while the shift key is pressed.

The \textit{Save} and \textit{Open/Import} commands may be useful for efficient handling of different classification settings. Please note, that the classification settings are also saved into the SASLab configuration file (*.ini). Therefore, switching between classification settings could also be done by using different configuration files.

\section*{Reset}
Resets the parameter limits for all classes and locations.
Configuring the classification option

First enable the Enable classification option in the Automatic Parameter Measurements settings dialog box and launch the Classification settings dialog box by the Settings button.

1. Select the desired classification method (axis-parallel thresholds or linear discriminant function)
2. Add the title for the new class by clicking at the add class button.
3. Select the Location, for which you want to input the value range limits (if you have activated more than one location in the Automatic Parameter Measurements dialog box).
4. Input the classification parameters:

For the axis-parallel thresholds method:
Input the lower (from) and upper (to) limits for each parameter at all locations. If one limit is out of interest (don’t care), leave the corresponding field(s) empty. Repeat this procedure (goto 2, add class button) until you have defined all classes you need.

For the linear discriminant function method:
Input the constant and the weights for each parameter at all locations for the discriminant function. When specifying a threshold, the samples will only be classified to one of the pre-defined classes when the classification score \(S_i \) exceeds this thresholds. Leave this edit field empty if no threshold exclusion is desired. When the option use min(abs(score)) is activated, the classification criterion is the smallest absolute value of the classification scores (instead of the maximum). This option may be useful for situations, where the standard linear discriminant approach with looking for the maximum score does not work. Assuming you need to classify elements based on a single parameter (e.g. the dominant frequency) into more than two classes. When setting the constant to the group centroid (the mean dominant frequency of each class) and the weight to \(-1.0\), the samples will be classified successfully (you would get similar results when using the axis-parallel thresholds option with appropriate interval settings, but the discriminant function method will be easier to setup).

5. Repeat this procedure (goto 2., add class button) until you have defined all classes you need.

The specified limits (or the constants and the weights for the discriminant functions) can be edited later by selecting the corresponding Class and Location entries. For complex settings use the Copy settings button to see an overview.
display of all classes and locations by pasting this overview into a spreadsheet. Additionally, the classification limits of each class can be seen on the 3D- Scatterplot view, which can be activated from the statistics setup dialog box.

Please note, that the classification settings will be lost, once the parameter or location selections in the Automatic Parameter Measurements setup have changed.

Automatic Parameter Measurements Statistics

This dialog box allows selecting the statistics display for the activated parameters of the Automatic Parameter Measurements facility.

Numeric display

The overall statistic values selected in this section will be displayed for each parameter at each location over all detected elements. The numeric display will appear on the top of the Automatic Parameter Measurements display window.

The following statistics are available:

Minimum, Maximum, Mean, Median, Standard deviation Relative on time (for duration only)

The relative on time corresponds to the sum of the element durations divided by the total duration of the spectrogram (the option “Compute parameters from entire spectrogram must be activated”).

Histogram of one parameter

This section allows choosing one parameter and a single location, from which a graphic histogram display is generated.

Enable Check this option to enable the histogram display. Note, that the Statistics/Enable option in the Automatic Parameter Measurements must be activated also.

Parameter : This list-box selects the parameter to be displayed.

Location : Selects the location (within each element) from which the selected parameter should be displayed.

Resolution This edit-box defines the x-axis resolution (width of the classes) of the histogram. The unit of this value is 1 s for all temporal parameters and 1 Hz for all frequency parameters. This value has no meaning for the class parameter.
2D-Scatterplot of two parameters
A two-dimensional scatterplot of two parameters/locations is generated.

3D-Scatterplot of three parameters
A three-dimensional scatterplot of three parameters/locations is generated. This display is a powerful tool for quickly exploring dependencies between parameters. 3D orientation is supported by animated or mouse controlled modification of the viewing perspective. The perspective can be changed manually by left clicking and dragging. The animated perspective view can be activated by right clicking on the graph.

Update
Updates the Automatic Parameter Measurements results.

Copy parameter measurement values
Copies the parameter measurement values of the marked or visible section into the clipboard. Optionally these values will be transferred by DDE or will be written into a LOG file (File/DDE Parameters / Log-File).

Copy parameter measurement values for entire file
Copies the parameter measurement values of the entire spectrogram (spectrogram (not only the visible section) into the clipboard. Optionally these values will be transferred by DDE or will be written into a LOG file (File/DDE Parameters / Log File, see page 139).

Copy parameter measurement values in transposed order
Copies the parameter measurement values that are currently visible on the numeric display window in transposed order (rows and columns reversed) into the clipboard.

Copy parameter measurement headings
Copies the headings for the currently activated parameters into the clipboard. This supports navigation through the exported measurement values. Optionally these headings will be transferred by DDE or will be written into a LOG file (File/DDE Parameters / Log-File).

Save detected elements into numbered .wav files
This command will save each detected element into a separated numbered .wav file. The file name format is Txxxxxxxx.WAV.
Destination base directory: This edit-field specifies the base directory, where the numbered .wav files will be saved.

Filter: This list-box determines, how and which events will be saved. The option **all classes** will save all events into the specified directory, regardless of any class attributes.

The following options are only available, if the classification facility is activated: The option **sort by class** will save the elements sorted by their class attributes into separated sub-directories relative to the specified base-directory. The sub-directory names will be derived from the class names (only the first 8 characters will be used).

The following options **only ...**, representing the defined classes, will only save those elements, which are associated with these classes.

File margins: It is possible to add a short margin before and after the detected element before it is saved into the .wav file. The duration of that margin is specified in units of 1 s.

Remove gaps between detected elements

This command will remove the gaps between the detected elements from the sound file. The resulting new sound file (displayed in the main window) will only contain the detected elements. Please note that the original sound file displayed in the main window will be replaced by the resulting file.

Filter: This list-box determines, which events will be preserved

The option all classes will preserve all events, regardless of any class attributes.

The following options **only ...**, representing the defined classes, will only preserve those elements, which are associated with these classes. This option is only available, if the classification facility is activated.

margins: It is possible to add a short margin before and after the detected element before the gaps are removed. The duration of that margin is specified in units of 1 s.

Insert break marks If this option is activated, a short click will be inserted between the preserved elements. This will allow you to identify the original bounds of the original elements.

Copy detected elements into section labels

This command will generate a section label from each detected element.
Filter: This list-box determines, which events will be copied to the label list. The option **all classes** will copy all events, regardless of any class attributes. The following options **only**, representing the defined classes, will only copy those elements, which are associated with these classes. This option is only available, if the classification facility is activated.

File margins: It is possible to add a short margin before and after the detected element before it is copied to the label list. The duration of that margin is specified in units of 1 s.

Label text This section determines the label texts of the generated labels.

- **index**: The label text will contain the consecutively index of elements.
- **class name**: The label text will contain the name of the element class (if there are any).

delete all previous labels If this option is checked, the previously defined labels will be deleted.

Copy peak frequencies into labels

Labels indicating the peak frequencies at the selected *Location of measurements* will be created. The last label of each element will be marked with a dot (period) in the label text. This enables the subsequent grouped export of labels (*Tools/Labels/Export label data…*). In this way, it is for instance possible to export frequency contours that have been edited manually (the created labels can be moved prior to exporting them).

Calculate Acoustic Complexity Index (ACI)…

This command calculates the Acoustic Complexity Index (ACI) according to the paper https://doi.org/10.1016/j.ecolind.2010.11.005.

The option **normalize (divide result by the number of temporal steps and frequency bins)** will output a mean value rather than a sum. The option **apply magnitude threshold** will exclude spectrogram magnitudes below the defined threshold. These two additional options (which are not included in the original paper) have been added in order to cope with some of the shortcomings of the ACI.

The option **display ACI versus time** will display the individual ACI values of each temporal step in a separate curve window. The ACI total value will be copied into the Windows clipboard.
Due to a number of various major shortcomings, we believe however that the ACI (as many other proposed eco-acoustic indices) is \textbf{NOT suited} for reliably quantifying animal biodiversity.

\textbf{Keyboard Shortcuts and Popup Menu…}\nThis command allows defining keyboard shortcuts for all menu commands of the selected window. Additionally, each command can be added to the popup menu, which is activated by right clicking on the window. To modify a keyboard shortcut, first select the command on the list and then activate the desired shortcut on the bottom of the dialog box. In order to simplify the access to frequently used commands, it is recommended to use appropriate shortcuts or popup menu entries for these commands.

\textbf{WavFile}\nThis menu supplies functions that are also available from the main window.

\textbf{Open…}\nOpens a new sound file.

\textbf{Browse}\n\textbf{Rename}\n\textbf{Rename by text module}\nThese commands are duplicates of the corresponding main window commands on the File menu.

\textbf{Import Format}\nSets the import format for the Open command (See 34).

\textbf{Spectrogram parameters…}\nSets the spectrogram parameters (See page 44).

\textbf{Copy :}\nCopies the currently visible or marked section of the .wav file into the clipboard.

\textbf{Save As…}\nSaves the currently visible or marked section of the .wav file into a new .wav file.
New instance
Starts a new instance of Avisoft-SASLab Pro.

Save configuration
Saves the current configuration (parameter settings) into the currently active configuration file (*.ini).

Automatic Parameter Measurements display window

The results of automatic parameter measurement can be shown in a separated display window. That window can be enabled in the setup dialog with the Show results in numeric format option.

All parameters selected in the setup dialog will be displayed in a table. The measurement values of each element are separated by vertical lines. The element number is displayed in the first column. The second column indicates the location of the following frequency parameters within each element.

Double-clicking at a list entry will move the spectrogram view to this element.

Setup
The Automatic parameter measurements setup dialog is launched.

Classification settings...
See page 184.

Statistics settings....
See page 188.
Compute parameters from entire spectrogram
If this option is checked, the automatic parameter measurements will be executed on the entire spectrogram file (not only on the marked or visible section). The element numbering is independent from the visible or marked section and will start at the first element of the spectrogram file. Otherwise the parameter measurements will only be executed on the marked or visible section of the spectrogram file. Element numbering will start at the first element of the marked or visible section.

Export

Copy parameter measurement values
Copies the parameter measurement values of the marked or visible section into the clipboard. Optionally these values will be transferred by DDE or will be written into a LOG file (DDE Parameters / Log-File).

Copy parameter measurement values for entire file
Copies the parameter measurement values of entire spectrogram (not only the visible section) into the clipboard. Optionally these values will be transferred by DDE or will be written into a LOG file (DDE Parameters / Log-File).

Copy parameter measurement values in transposed order
Copies the parameter measurement values that are currently visible on the numeric display window in transposed order (rows and columns reversed) into the clipboard.

Copy parameter measurement headings
Copies the headings for the currently activated parameters into the clipboard. This supports navigation through the exported measurement values. Optionally these headings will be transferred by DDE or will be written into a LOG file (DDE Parameters / Log-File).

Copy the time stamp of the selected element
Copies the time stamp of the selected element into the clipboard.

Copy class sequence
Copies the names of the detected classes into the clipboard (in ASCII format).
Example:
A B B A C C C C B

Copy class frequency
The number of elements associated to each class is counted. The result is copied into the clipboard (in ASCII format).
Example:
Save detected elements into numbered .wav files...
See page 189.

Remove gaps between detected elements from sound file...
See page 190.

Copy detected elements into section labels
See page 190.

DDE Parameters / Log-File.
Launches the DDE parameters dialog box. See page 139.

View

Show the selected element on the spectrogram window This command moves the spectrogram window view to the element that is currently selected on the list.

Synchronize the numeric and the spectrographic view. This option connects the scroll bars of the numeric and the spectrographic display views.

Automatic Response

The Automatic Recording option of the Real-Time Spectrograph and the Automatic Parameter Measurement / Classification option can be combined in order to immediately generate an Automatic Response to acoustic events depending on the recognized class of event. Responses can be either simple playbacks of pre-recorded .wav files or more complex modified echoes of the original sound event. This feature enables sophisticated playback experiments for investigating animal communication.

The Automatic Response Settings dialog box allows defining the desired response for each class:
The listbox on the top of the dialog box lists all available classes. Additionally there are entries for unrecognized elements ‘?’ and wildcard ‘*’ responses. To specify the response for a class select the corresponding line on the list and select the type of action from the Action listbox. If the action specified for the wildcard * class is not no response, this action will override any other actions specified on the other classes. Some actions require to input a filename or another text string as parameter.

The following response actions are available:

no response : No response will be generated.

play .wav file : The specified wav file will be played back.

run another program : The specified program will be executed. This option could be used to run customized programs in order to realize special responses (by remote- controlling external systems via IO interfaces: e.g. triggering a feeding automat for learning experiments or switching light on or off). If the option **Append file name** is activated, the file name of the underlying .wav file is added as a command line argument. The option **Append channel number** will add the channel number to the command line enabling multi-channel operation.

DDE transaction XTYP_POKE :
DDE transaction XTYP_EXECUTE :
A command or data string is sent to another application through Dynamic Data Exchange. SASLab acts as a DDE client with the wType parameter set to XTYP_POKE or XTYP_EXECUTE. The DDE parameters for this transaction are defined on the parameter field (instead of a filename) as follows:

Application; Topic; Item; Data/Command string

The semicolons act as delimiters between the DDE parameters. Please note, that the DDE parameters for this response action are completely defined on the parameter field. The separated **DDE Parameters / Log File** dialog is used for measurement data export only. The DDE transaction facility allows the user to program more individual responses (e.g. by a Visual Basic program receiving these DDE commands). If the option **Append file name** is activated, the file name of the underlying .wav file is added to the data/command string. The option **Append channel number** will add the channel number to the data/command string enabling multi-channel operation.

echo The original sound event will be played back.

echo, Reverse The reversed event will be played back.
echo, Change Volume The original sound event is modified according to the settings made in the *Edit/Change Volume* command.

echo, FIR filter The original sound event is filtered according to the settings made in the *Edit/Filter/Time domain FIR-Filter* command.

echo, IIR filter The original sound event is filtered according to the settings made in the *Edit/Filter/Time domain IIR-Filter* command.

echo, FFT filter The original sound event is modified according to the settings made in the *Edit/Filter/Frequency Domain Transformation* command.

echo, Time/Pitch Conversion The original sound event is pitch converted according to the settings made in the *Edit/Format/TimePitch Conversion* command.

resynthesis, Scale The spectrogram is first scanned for the fundamental frequency and amplitude envelope according to the setting made under the Synthesizer command *Tools/Scan Spectrogram* (f_0, a_0). The fundamental frequency and amplitude envelope will then be modified according to the settings made under the *Tools/Scale* command. This feature allows modifying the fundamental frequency without changing the temporal properties or modifying the speed without changing the fundamental frequency.

resynthesis, add parameter from .ARR file The spectrogram is first scanned for the fundamental frequency and amplitude envelope according to the setting made under the Synthesizer command *Tools/Scan Spectrogram* (f_0, a_0). The synthesizer parameters (amplitudes of harmonics or amplitude and frequency modulation) stored in the specified .arr file will then be added to the arrangement. This feature allows adding harmonics or modulations to whistles.

increment RECORDER file number The current .wav file number of Avisoft-RECORDER is incremented. This option allows filtering the events saved by the RECORDER. For this mechanism it is required, that the *Increment* option of the RECORDER configuration is not activated. Additionally, the *Autotransfer to SASLab* and *Wait for Avisoft-SASLab* options must be activated. With the appropriate classification settings in SASLab Pro, the RECORDER will then only save those events, which contain at least one element of the associated class.

The **select file** button can be used to search for the parameter files.

The echo and resynthesis actions require, that the original sound event is loaded into the main window. Therefore, the Automatic Recording option *Autotransfer*
event waveform must be activated for these actions. For all other actions it is sufficient to activate the *Autotransfer event spectrogram* option.

Delay The response is delayed by the specified duration.

Repeat x times The responses are repeated according to this entry.

Append file name If this option is activated, the complete .wav file name will be appended to the actions *run another program* and *DDE transaction XTYPE_POKE / XTYPE_EXECUTE*. The format is as follows:

```
/file=xxxx
```

example: “/file=C:/RECORDER/CHANNEL1/T0000001.WAV”

Append channel number If this option is activated, the channel number of the .wav file will be appended to the actions *run another program* and *DDE transaction XTYPE_POKE / XTYPE_EXECUTE*. The channel number is extracted from the path name of the .wav file. The path name must include the string “channel” followed by the channel number. For example, channel number one should have the string “channel1” in its path name.

The format is as follows:

```
/channel=x
```

example: “/channel=1”

Send acknowledge to Avisoft RECORDER If Avisoft-RECORDER is used as recording front end, it may be useful to establish some kind of handshaking between RECORDER and SASLab. Otherwise endless loop situations may occur, because played responses can trigger the RECORDER again. Therefore this option should be activated, when Avisoft-RECORDER is used. Additionally, within the RECORDER configuration dialog the option *Wait for Avisoft SASLab* must be activated. Using Avisoft-RECORDER as recording front-end has several advantages over Automatic Recording option of the SASLab Real-time spectrogram. You will have much more control over the critical event detection (pre-trigger and graphic adjustment of trigger conditions).

Play response through Avisoft RECORDER If this option is activated, all playback responses will be routed via the Avisoft RECORDER software. This would enable ultrasonic playback by using a high-speed data acquisition / playback board.

Enable Automatic Response Enables the Automatic Response mode. Additionally, the real-time spectrograph command *Record/Automatic Recording/Autotransfer Event spectrogram* or *waveform*, the main window option *Actions/On new sound file/Create Spectrogram* and the *Enable automatic
measurements option from the Automatic parameter measurements setup must be activated in order to make the complete response process working.

When the Automatic Response mode is activated, the measurements will be automatically be exported (copied into clipboard, transferred via DDE or written into a LOG file) Use the DDE/LOG button to activate DDE or LOG file data export. This may be useful for protocol purposes during long-term monitoring.

Prepare By pressing this button, all settings necessary for setting-up the Automatic Response option feature will be made at once.

Methods of measurement value export

Avisoft-SASLab Pro offers several ways for exporting measurement values for subsequent statistical analysis:

Clipboard
A single data-record is copied into the clipboard. To save this record you have to switch to a different application where the data can be inserted. To prevent the time-consuming redrawing of application windows you should arrange the windows so that they do not overlap. Because the user has full control over the data transfer, this export mode is the most flexible one. However, some additional user interaction is required.

mXML .wav file RIFF chunk
When the measurement data are copied into the clipboard, the data can at the same time also be saved into an application-specific “mXML” RIFF chunk of the .wav file. To enable this mode of operation, the corresponding option must be activated either from the “DDE Parameters / Log File Settings” dialog box or from “Metadata”/”mXML measurements”/”Enable mXML data logging”.

Log-file
The data sets will be stored into an ASCII-file. This is done when measurement values are copied into the clipboard and the log-file option in the "DDE Parameters / Log File" dialog is activated. Using a log-file has the disadvantage that the structure of the delivered data is fixed (each data-set in a new line) and that there is no immediate visual response of the data transfer.

DDE-transfer
The highest degree of flexibility, processing speed and simplicity can be achieved by using the DDE-transfer (Dynamic Data Exchange). The data are transferred automatically without any further actions by the user. If the DDE-server (the
application receiving the data) is a spread-sheet (for instance Excel), a structured data arrangement can be generated by specifying the desired number of records per line. See also *DDE Parameters / Log File* at page 139.

Labels

Another useful opportunity for collecting measurement values is the labeling functionality. The advantage of this method is, that the logged coordinates can be reviewed and if necessary corrected. Additionally comments (the label texts) can be assigned to each measurement. See also page 161.

Spectrogram output

The spectrograms visible on the screen can be printed in different ways. At first you can print directly by the menu *File/Print Spectrogram*. More flexibility can be achieved by copying the spectrograms to the clipboard or by saving spectrograms into graphics files. These images can then be inserted into different Windows applications (word processor, graphics application) where they can be resized and supplied with textual description. Another advantage is, that several spectrograms can be placed on a single page.

The quality of the printed spectrograms depends on the kind of printer used and the settings of the printer driver. Most standard printers cannot display true grayscale. One pixel can be either black or white. No values between these two colors can be displayed. In order to support grayscale output the printer driver software emulates different levels of gray by dithering. This means that the software produces a matrix of small points for every image element. The density or size of these points determines the gray level to be displayed. Because the resolution of most inexpensive printers is limited (300dpi = 300 points per inch), the dithering (the single points within the matrix) can be recognized by the human eye, which is sometimes undesired. Most printer drivers allow changing the parameters of the dithering algorithm to optimize the obtained spectrogram prints. If you want, that dithering is not so coarse you can select the fine adjustment. This results in smaller points but in a reduced accuracy of the gray levels. In order to achieve the maximum spectrogram print quality you should always use the whole paper size for the image (landscape format). For a publication this large printout would be reduced in size that causes that the dithering does not disturb the impression of the final representation.

To overcome the dithering problem a better printer with higher resolution (600dpi or more) or a thermo transfer printer or a color sublimation printer could be used. The latter printers do not use dithering, because they can display true colors or gray levels which results in a very good printing quality.
In binary black&white spectrogram prints the coarse raster of the single pixels is undesired. This effect can be reduced by selecting a higher frequency resolution (512 or 1024 points FFT) and a higher temporal resolution (overlap of 87.5, 93.75%). Because high time resolution causes a longer spectrogram image with more spectra per time interval you have to use the menu File/Copy entire spectrogram or Save entire spectrogram. After inserting this long image into a word processor or a graphics application you can change the aspect ratio so that the image height will be increased.

The menu function Tools/Enlarge Image can be used to multiply the single pixels. Then the menu Tools/Image Filter: Average is used to soften the edges of the enlarged pixels.

The real-time spectrum display

The real-time spectrum display is activated from the main window menu ”File”/”Real-time spectrum...”. The curve window with some additional options is launched.

The real time display is started by the menu option ”File”/”Start real time spectrum” or by the button. The menu option ”File”/”Real time spectrum setup” allows to set the FFT length, window type and whether the amplitude should be displayed in logarithmic or linear scale.

The curve window

The curve window is activated from the ‘Analyze’/’One-dimensional transformation’ menu option in the main window. Measuring cursors can be activated by left-clicking at the left or upper margins and dragging them into to the diagram.
File

Print
Prints the visible contents of the curve window. The parameters defined in the menu Export Parameters will be considered. Optionally a caption can be input.

Save
Saves the visible contents of the curve window into a WMF-graphics-file.

Copy
Copies the contents of the curve window into the clipboard (WMF-format).

Export Parameters
This dialogue allows setting the parameters for printing, saving and copying into the clipboard:

There are three different export-formatting modes:
Single line (automatic scaling): The curve is displayed in a single line. This mode corresponds to the display on the screen.

Multiple lines (automatic scaling): The curve display is divided into several lines. The number of lines is specified in the edit field behind. Large line counts will increase the x-resolution (temporal resolution in waveforms), while the y-resolution is decreased, because the entire curve is always fitted onto one single page.

Multiple lines and pages (static scaling): Both x and y resolution is specified in the edit fields **height** and **width**. The height is expected in millimeters. The **width** is expected in seconds per line (or Hz per line in spectrum display). Depending on these specifications and the size (duration) of the curve, the display is spread over several lines and pages. If the curve is exported through the clipboard or by .WMF file, only the first page is exported. Output of all pages is only possible by direct printing.

Display peripheral graduation markers: If this option is checked, the graduation marks located at the margins of the coordinate system will be displayed. Otherwise these graduation marks will be hidden.

No closed frame (only x and y axis): If this option is checked, a closed frame will be drawn around the curve. Otherwise only the x- and y-axis will be displayed.

Hide coordinate system: If this option is checked, no coordinate system will be drawn. Only a small x-scale and the curve itself will be displayed. This kind of display may be useful for signals where the y-scale is out of interest (e.g. waveforms of grasshoppers and frog vocalizations).

Hide y-axis: This option will hide the y-axis. Use this option when the y-axis scaling is out of interest.

Aspect ratio and scaling like screen: The aspect ratio and the distribution of graduation markers of the exported graph will be the same as in the screen display. If this option is not checked, the aspect ratio and the distribution of graduation markers are adapted to the paper format in order to fill the entire page. This option will only be applied, if the **Single line** option is activated.

Curve width: Relative line width of the curve.

Frame width: Relative line width of the coordinate system frame.
Grid width: Relative line width of the optionally grid.

Character size: Relative character size of the labels.

The distance between graduation markers can either be set to a static value or it can be set automatically, when the option automatic is selected. The automatic scaling can be influenced by selecting an appropriate percent value of the standard distance.

Title alignment: Position of the sound file title at the top of the display. Possible options are left, center, right and disabled if the current title should not appear. The sound file title can be specified from the label settings dialog box (see page 161).

Default: Returns to the default settings.

Data export >

Save ASCII file
Saves the curve window data into an ASCII-file.

Copy ASCII file
Copies the curve window data into the clipboard (ASCII-format)

Add x axis increments
This option will add the x-axis increments to the ASCII data in the two above commands.

Save as .WAV file…
Saves the curve window data into a .wav file.

Copy WAV file
Copies the curve window data into the clipboard (WAV-Format).

Save as .ft file…
Saves the curve window data into an ASCII amplitude envelope file (*.at) that can be used for subsequent synthesis purposes (for instance on the command Edit/Change volume…).
Save as .flf file…
Saves the curve window data into an ASCII spectrum file (*.flf) that can be used for subsequent synthesis purposes (for instance on the command Edit/Filter/Time Domain FIR Filter… or Edit/Filter/Frequency Transformation…).

Copy cursor values
The most recent values measured by the cross hair cursors will be copied into the clipboard. Additionally the measured values can be transferred to other Windows-applications by DDE (Dynamic Data Exchange) or they can be stored into an ASCII-log-file. This has to be specified with the following menu "File/DDE Parameters / Log File".

DDE Parameters / Log File
See page 139.

The following menu options are only available in the real-time spectrum display mode, which can be activated from the main window menu option "File” / ”Real-time spectrum”.

Start real-time spectrum
Start the real-time spectrum display.

Stop real-time spectrum
Stop the real-time display.

Real-time spectrum setup
The following parameters can be adjusted:

FFT length: The FFT length determines the frequency resolution of the spectrum, which is equal to the sampling frequency divided by the FFT length.

Window type: The window type determines the suppression of spectral leakage and the effective frequency resolution.

Logarithmic power spectrum: If this option is checked, the spectrum will be displayed as a logarithmic power spectrum in dB.

Sound card settings
This dialog box allows setting the sampling frequency and bit-depth. If there is more than one sound card installed, the desired device can be selected. The other parameters (”Duration of recording” and ”Perform sampling-frequency conversion”) do not influence the real-time spectrum display.
Display

Zoom
A part of the curve is displayed in higher resolution.

Unzoom
The whole curve is displayed.

Unzoom with zero
The whole curve including the zero-line is displayed.

Zoom previous
The last view of the curve is retrieved.

Display range
This dialog box allows the manual adjustment of the visible section of the data. You can feed in the left or right margin of the section to be selected into the edit boxes \(X_{\text{min}}=\) and \(X_{\text{max}}=\). You can feed in the top or bottom margin of the section to be selected into the edit boxes \(Y_{\text{min}}=\) and \(Y_{\text{max}}=\).

The axis title edit fields allow to edit the axis titles, which will be displayed on exported graphs, when the Show axis titles option of the Curve Window Export Parameters dialog box is activated.

For 3D graphs there are additional fields for the Z axis and two fields for defining the horizontal and vertical viewpoint direction.

The option keep will preserve the current display range for the following signal. If this option is not activated, the display range of a following One-dimensional transformation command will be reset to the default values.

The dB value defined under limit rezoom will limit the display range of logarithmic data to the specified value, when the re-zoom command is executed. This prevents re-zooming to very small (e.g. -100 dB) ranges, even if there are such small values on the data set.

This dialog box can be activated also by double-clicking on the curve display.

Grid
A grid is displayed inside the curve window.
Steps
If this option is activated, the samples of the curve are connected by horizontal and vertical lines. The length of the horizontal line represents the discrete spacing between the samples. If this option is not checked, the samples will be connected by straight lines.

3D Options...
3D options are only available for XYZ plots. The **3D Display Options** dialog box allows customizing the 3D graph. Right clicking at the graph can launch this dialog box. The diverse display options should be chosen in order to get the best representation of the 3D data on the 2D screen.

Coordinate System
- **Show labels**
- **Show grid**
- **Show Y-Z and Y-X planes**

Samples
- **Connect sample points**
 Connects consecutive sample points with lines.

Reject hidden lines
If this option is activated, any lines theoretically not visible on the 3D surface from the current point of view will be hidden. Otherwise also the „hidden“ lines will be displayed. Activating this option will slow down the display speed.

Show sample projections
Shows a perpendicular projection of each sample to all three planes (Y-X, Y-Z, X-Z)

Connect samples with X-Z plane
This option will draw a perpendicular line from the sample to the X-Z plane.

Colorize Y axis
Colorize X axis
Colorize Z axis
Activating one of the **Colorize** options will display the sample points in different colors depending on the value of the corresponding coordinate. The display range is divided into 16 equally spaced color sections. The list box behind allows choosing the desired color table.
Show sample numbers
This option shows the number (index) of each sample. This option is useful for identifying samples on scatter plots. Don’t use this option for 3D spectrographs or other extensive data sets.

View... This button launches the Display Range dialog box.
Animation... This button launches the 3D Animation dialog box:

For better orientation on the pseudo three-dimensional plot, the viewpoint perspective can be animated automatically. This dialog box allows controlling the range and speed of animation.

Vertical viewpoint direction
Defines the animation parameters for the vertical view direction.

Horizontal viewpoint direction
Defines the animation parameters for the horizontal view direction.

period
Defines the duration of one complete cycle.

range
Defines the amplitude of viewpoint modification. An angle smaller than 180 degree will swing the graph in the corresponding direction. Input 180 degree for a total rotation with skip.

Press Ok to start the animation. The animation mode can be cancelled by pressing the Cancel button of the 3D Animation dialog box or simply by an Esc keystroke.

Spectral Characteristics
This menu activates a separated window for displaying of some characteristics of magnitude- and power-spectra.

The following characteristics will be displayed:

Maximum: The maximum magnitude- or power-amplitude of the spectrum.
at Frequency: The frequency of the maximum.
The following three measurement values characterize the distribution of energy across the spectrum. The spectrum will be integrated and divided into four equal parts. The three frequencies dividing the magnitude spectrum into four parts are called quartiles.

lower Quartile (25%): Below this frequency is 25% of the total energy.

Mean Frequency (50%): The mean frequency of the spectrum. Below this frequency is 50% of the total energy.

upper Quartile (75%): Below this frequency is 75% of the total energy.

The distance between the lower (25%) and upper (75%) is a measure of the pureness of sounds.

Energy below xxxxx Hz: The faction (expressed in %) of the total energy that is allocated below the specified frequency.

Threshold: The contents of this edit field determines the threshold for the computation of the following cut-off frequencies. Note, that this value has different meanings for magnitude and power spectra.

min Frequency:
max Frequency: These frequencies show, where the amplitude falls short of the maximum of the spectrum minus the threshold.

Bandwidth: This is the difference between max and min Frequency.

If the **total** option is checked, the min and max search is started from the left (for min) and the right (for max) margin of the curve window. Otherwise the min and max search is started from the maximum.

Min and Max frequency detection with the total option activated.
Min and Max frequency detection with the total option not activated.

Peak detection

This section supports localization of local peaks in the frequency spectrum. **Threshold:** Only peaks that are higher (related to the maximum or absolute) than this threshold will be considered. If the **absolute** option is activated, the threshold value is interpreted as an absolute value, otherwise, the threshold value is related to the maximum of the spectrum.

Hysteresis: Only such local peaks that are higher than the preceding valley plus this hysteresis will be detected as peaks.

number of peaks: The number of detected peaks is shown here.

The listbox below shows the results of peak detection. The index number of the peak is followed by frequency and amplitude of that peak. The maximum number of peaks that can be detected is 16.

Fundamental: If possible, the fundamental frequency is derived from the frequencies of the detected peaks. If fundamental frequency determination is not possible (no harmonic structure), this measure will be zero.

The "**Close**"-button cancels the display window.

The "**Copy**"-button can be used to copy these values into the Windows-clipboard. Only those values, which have been marked by the check boxes behind the values will be copied. Tabulators separate the single values. A complete data set is terminated by CR/LF. This allows an easy interfacing to spreadsheet applications for later statistical analysis.

Pulse Train Analysis...

The Pulse Train Analysis window is launched. See page 60.
Tools

Insert bound cursor
Inserts a vertical measuring cursor that moves along the curve. Two of these can be activated in order to measure differences.

Insert free horizontal cursor
Inserts a free moveable horizontal measuring cursor. Two of these can be activated in order to measure differences.

Remove cursor
Removes the measuring cursors.

Harmonic cursor
When this option is checked, the measuring cursors will have a harmonic style. In that mode of operation, the cursor also shows multiples of the fundamental cursor frequency. This supports measuring the fundamental frequencies of complex harmonic sounds. Each of the cursor harmonics can be dragged by mouse, which allows precise fundamental frequency measurements.

The following three label commands are only available for displays versus time [s].

Cursor linkage between Instances…
This dialog allows to define cursor linkages between different instances of the SASLab Pro software. See page 157 for details.

Insert label
See page 162.

Insert section label
See page 162.

Label settings...
See page 162.

Generate section labels
This command will generate section labels from the current gate function measurements. This command is only available for the “Gate function (signal/silence duration)”.
Keyboard Shortcuts and Popup Menu

This command allows defining the keyboard shortcuts for all menu commands of the selected window. Additionally, each command can be added to the popup menu, which is activated by right clicking on the window. To modify a keyboard shortcut, first select the command on the list and then activate the desired shortcut on the bottom of the dialog box. In order to simplify the access to frequently used commands, it is recommended to use appropriate shortcuts or popup menu entries for these commands.

Edit

Smooth

The data record is averaged (moving average). The number of consecutive samples specified in the _Average over_ list box are accumulated and divided by that number. The corresponding bandwidth of the averaging process is displayed under _corresponds to_.

Power spectrum

If the displayed data record is an amplitude spectrum, it can be converted into a power spectrum by this menu option.

Normalize to maximum

The displayed data record is normalized to its maximum. The maximum is scaled to 1 Volt. If the data record is a power spectrum the maximum is scaled to 0 dB.

For measuring the data record, two reticule cursors can be activated. This is done by clicking into the region at the left of the Y-axis followed by dragging the mouse cursor to the desired X-position of the data record.
The Real Time Spectrograph Window

The real time spectrograph allows Spectrogram display during recording. The recorded signals delivered by the tape recorder are visualized simultaneously to human perception on the screen. This window can be activated from the main window command File/Real Time Spectrogram.

The Real time display is started by the menu "Record"/"Start" or the button . The real time display can be stopped by the menu "Record"/"Stop" or by the button . The menu "Record"/Pause" or the button can be used to interrupt the real time display.

Simultaneous to the display of the spectrogram the last recorded time data are stored in a special data buffer. The buffer size can be adjusted under the menu "Parameter"/"Buffer Size". In case of recognizing an interesting sequence the data stored inside the buffer can be transferred to the main window with the menu "Record"/"Transfer to Main Window" or the button . These data are displayed immediately inside the main window. This function allows easy selection of interesting sequences from long tape recordings for spectrographic analysis.
The menu "Parameter"/"Spectrogram-Parameter..." or the button allows adjusting of Spectrogram-Parameters for real-time display. The display contrast can also be adjusted by the buttons and .

The window size can be adjusted in order to obtain an optimal screen usage.

For save detection of over-modulation, the button will turn into , once an over-modulation is detected. Press that button to reset the over-modulation status flag.

Frequency and time measurements can be made using the cross cursor on the spectrogram image. For measuring durations click at the start point and drag the mouse cursor to the end point. The associated results will be displayed at the top of the window. If you cannot see the results, enlarge the horizontal size of the window.

File

Transfer buffer into main window (and optionally save into file): The content of the buffer is transferred into the main window.

Save into numbered .wav file and increment: If this option is activated, the content of the buffer will be saved into a self-incrementing numbered .wav file each time, the “Transfer buffer...” command is executed. The files will be written into the Avisoft program directory. The file number can be reset from the menu Record/Automatic Recording/Reset. Before resetting, the existing files should be renamed or moved to another folder to prevent overwriting.

Print Spectrogram: The content of the data buffer (not only the visible signal) is printed.

Save Spectrogram: The content of the data buffer (not only the visible signal) is saved in a graphics file.

Copy Spectrogram: The content of the data buffer (not only the visible signal) is copied to the clipboard in spectrographic representation.

Record

Start: Starts real-time spectrogram display.

Stream into WAV file: If this option is activated, all sound data displayed in the real-time spectrograph window will continuously be written into a WAV file. At the beginning of each recording session (when the record button is pressed) a SaveAs dialog box is launched to define the file name under which the data will be saved.

Auto start mode: If this option is activated, recording is started each time the real-time spectrograph is launched.
Start (read from file): Starts real time display with data taken from a *.wav file. The sound will be played back through the soundcard while the spectrogram is displayed. A File-Open dialog will be launched when this menu option was chosen. Alternatively, this display mode can be started by dragging a *.wav-file from the file-manager into the real-time spectrogram window.

Stop: Cancels real-time display.
Pause: Interrupts real-time display.

Automatic Recording...

During real-time spectrogram display it is possible to save acoustic events automatically. Automatic recording is a triggered data acquisition. Each time the input signal exceeds a predefined threshold within a given frequency domain, a new T*.WAV file is generated, and the input signal will be stored for a predefined hold time in that file. If the threshold is exceeded again within that hold time, the recording will be extended until there is no further threshold exceeding detected. This technique ensures, that only one single file is generated from one complex acoustic event, even if there are short silent sections in it. Alternatively, all events can be stored into a single .wav file.

This dialogue box allows setting the parameters for this mode of operation.

Automatic event recording into .wav file
This check box enables the automatic recording mode. Even if this option is disabled, the trigger status (“TRG”) will be displayed on the top of the real-time spectrogram window, which is useful for the adjustment of the trigger.

Autotransfer event waveform
If this option is activated, each detected event is transferred automatically into the main window. This option supports real-time classification, if additionally the main window option Actions/On new sound file/Create spectrogram is activated.

Autotransfer event spectrogram
If this option is activated, each detected event is transferred automatically into the spectrogram window (as a spectrogram only). This option supports real-time classification. In contrast to the above option Autotransfer event waveform, the spectrogram option does not require to recalculate the spectrogram, which may accelerate the classification process.

Enable automatic recording
This check box enables the automatic recording mode. Even if this option is disabled, the trigger status (“TRG”) will be displayed on the top of the real-time spectrogram window, which is useful for the adjustment of the trigger.
Automatic Response Setup

See page 195.

Reset overflow flag

Use this command to reset the overflow flag.

Freeze display (toggle)

This command freezes the current display for observation. The recording process will not be affected. This command should be executed by a keyboard shortcut (Esc) in order not to delete the current display. Executing this command again will continue the running display.

Trigger

Threshold

The threshold for triggering is expected in percent of the measurement range (full scale). Low values will make the system more sensitive for soft signals. The threshold should be selected carefully. If that value is too small, you will get a lot of undesired recordings caused by other soft disturbances. If the value is too large, you may loose recordings you are interested in because the signal level was below the threshold. To adjust the threshold, you should try different settings while automatic recording is disabled. A recognized trigger event is indicated by the string "TRG" on the top of the real-time spectrogram window.

Frequency domain

The comparison with the threshold is done only with that part of the input signal, which is within the specified frequency domain. This frequency selectivity helps to distinguish between the signals you are interested in and other disturbances. Please note, that the internal frequency resolution is derived from the FFT length of the spectrogram display. In other words, only frequency differences visible on the spectrogram can be distinguished by the trigger.

Hold time

Each time the threshold is exceeded, a file with at least that duration (hold time) will be generated. If a new trigger event occurs within that hold time, the recording will be continued until there is no further trigger event detected. The hold time should be set as small as possible in order to keep the recording files short.

Minimum duration

In order to prevent saving of undesired short events (spikes), the minimum duration of a trigger event can be specified here. In case the event is shorter than this value, the file is skipped and will be overwritten by the next one. (The file
number will not be incremented after closing the file.). The default value is zero, which means that all events, even the shortest, will be saved.

File name
The file name of the next recording file is displayed here. The file name consists of a leading "T" followed by a serial number and the extension *.WAV. The serial number is incremented after each recording. If the option *Save all events into a single file* is activated, this edit field allows editing the .wav file name for storing the events.

The files will be saved into the directory, which was used for the last save operation (by default the Avisoft directory).

Reset
This button resets the internal file counter to one. The name of the next file will then be T0001.WAV. As a result the old files will be overwritten.

Save all events into a single file
If this option is activated, the events will be stored into a single .wav file (instead of saving into numbered files). The file name under which the events will be saved has to be specified in the edit field *File name*. Each new event will be appended to the existing file. The option *Insert break marks* will insert a short full-scale pulse into the .wav file after each event. This allows identifying the single events in later analysis.

Buffer Size...
This dialog box allows determination of the "Buffer size" for saving of most recent recorded data. The size is expected in kBytes. The buffer size determines the duration of recorded data depending on the sampling frequency and the data format (8 or 16 bit, mono or stereo). You should select a buffer size that is as small as possible for analyzing of data. This will prevent memory conflicts with other applications.

The "Refreshing time" determines how often the real-time spectrogram display is updated. This value is expected in percent of the default time. Small values will give more frequent updates of the display. Depending on the performance of your computer you can select smaller values. Doing so may raise the risk to lose samples. So you should try the best value for your computer configuration that allows recording without gaps.

The option "Enable USG DI trigger" activates the digital input of the Avisoft-UltraSoundGate for transferring the buffer contents into the main window. If activated, an active-low signal at the DI will execute the command *Transfer buffer into Main Window*. This option should not be activated when using other
soundcards than the Avisoft-UltraSoundGate. Doing so would sporadically activate that command.

With the option "Enable Joystick button #1 / USG button" activated, the buffer contents will be transferred into the main window by pressing button #1 of a joystick (or the TRIGGER button an a UltraSoundGate device).

The Default button sets the default values for these parameters.

Envelope
If this option is active, the envelope of the signal will be displayed above the spectrogram. Note that this can slow down the display speed. The color of the envelope turns to red if the soundcard is over-modulated. In this case you should reduce the recording level to prevent distortion of the recorded signal.

Scroll-Mode
The Spectrogram will be scrolled from right to left in the single-line Spectrogram display if this option is checked.

Sound Card Settings...
See page 27.

Additionally a temporal overlap between 0 and 87.5 % is available. Sound card sampling frequency and down-sampling is also available from this dialog box. The down-sampling option allows to further decrease the sampling rates supplied by the soundcard. That may be useful for the analysis of low frequency signals.

Export-Parameters...
See page 136.

Keyboard Shortcuts and Popup Menu
This command allows defining the keyboard shortcuts for all menu commands of the selected window. Additionally, each command can be added to the popup menu, which is activated by right clicking on the window. To modify a keyboard shortcut, first select the command on the list and then activate the desired shortcut on the bottom of the dialog box. In order to simplify the access to frequently used commands, it is recommended to use appropriate shortcuts or popup menu entries for these commands.
Synthesizer (dialog-based)

The dialogue-oriented synthesizer is suited for the generation of simple single sound elements. A large number of parameters can be edited numerically. The parameters are divided into two categories: frequency and amplitude.

Frequency / FM

- **f0 (Fundamental frequency)** This is the start frequency at the beginning of the element.
- **df (Frequency change)** Amount of frequency change over the entire element duration. If a constant frequency signal is desired, this parameter must be set to 0 Hz.
- **f(t) (Frequency evolution)** Shape of the frequency change df over the entire element duration dt. The following shapes are available:

 Linear: \(f = f_0 + df \times \frac{t}{dt} \)
Square: \(f = f_0 + df \times (t/dt)^2 \)

square2: \(f = f_0 + df \times (1 - (1 - t/dt)^2) \)

cosine: \(f = f_0 + df \times \cos(t/dt) \)

sine: \(f = f_0 + df \times \sin(t/dt) \)

File: \(f = .ft \) ASCII file (1st column: time, 2nd column: frequency in Hz or kHz)

If the option "File" is selected, the frequency evolution is taken from the ASCII-file (*.ft) selected in the list box "user-defined frequency evolution". In this case the entries \(f_0 \) and \(df \) will be ignored.

Frequency modulation

In this section a frequency modulation can be specified.

The following options are possible:

none (no frequency modulation),

Sine (sine shaped frequency modulation),

Triangle. (triangular shaped frequency modulation)

fm (Modulation frequency) At height modulation frequencies this value corresponds to the distance between the sidebands resulting from FM. At low modulation frequencies the inverse of this value corresponds to the period time of the frequency change visible in the spectrogram display.

phi (Phase of the modulation signal) This value determines the first value of the FM. It has only at low modulation frequencies a significant effect.

df (Modulation bandwidth) This parameter determines the amount of the frequency change.

Amplitude / AM

A (Amplitude, volume) Absolute amplitude of the fundamental frequency in Volts (1V corresponds to full scale)

O (Offset) Offset voltage, which is added to the sine signal. (1V corresponds to full scale)
User-defined envelope (a,t-ASCII-file) The selected file (*.at) is used to generate the amplitude (envelope) of the synthesized signal.

t on/off () Duration of fade-in and fade-out at the begin and end of the element. Fading prevents perceptible noise when the sine generator is switched on or off. The list box behind allows selecting the shape of fading: linear, sine 1/2 (1/2 sine period) and sine 1/4 (1/4 sine period).

A0 Relative amplitude of the fundamental frequency compared to the absolute amplitude of the fundamental A in dB
A1 Relative amplitude of the first harmonic compared to the absolute amplitude of the fundamental A in dB
A2 Relative amplitude of the second harmonic compared to the absolute amplitude of the fundamental A in dB
A7 Relative amplitude of the seventh harmonic compared to the absolute amplitude of the fundamental A in dB

0 dB means that the harmonics has the amplitude defined in A. -20 dB will generate a harmonic with 1/10th of the amplitude defined in A. Those harmonics that are not desired must have a value below -96dB. Alternatively the edit field can be cleared. If a true sine signal without harmonics is desired, all edit fields from A1 to A7 must be empty and A0 should be set to 0dB.

Amplitude modulation
This section allows specifying an amplitude modulation. The following options are available:

none,
Amplitude: Normal amplitude modulation with conservation of the carrier frequency (fundamental).
Ring: special amplitude modulation with rejection of the carrier frequency (fundamental).

fm (Modulation frequency)
The modulation frequency corresponds to the distance of the sidebands from the fundamental frequency.

m (Modulation depth) 0% is no AM, 100% is maximum AM.

dt (Tone duration)
This is the duration of the signal to be synthesized. The preset value represents the duration of the marker in the main window.
noise
Adds white noise with the specified amplitude to the signal (1V corresponds to full scale). Set this value to zero if no noise is desired. If pure noise is required set the amplitude of the sine generator (A in section Amplitude /AM) to zero.

Default
This button resets all parameters. As a result a pure 1 kHz sine signal at 0.5 V is entered.

Insert
The signal is synthesized and is copied into the main window at the current insert point.

Clipboard
The signal is synthesized and is copied into the clipboard.

Sampling rate settings…
This dialog box allows defining the sampling rate of newly created sound files. The option ‘in the Sound Card Settings’ will take the currently selected sampling frequency from the main window menu File/‘Sound Card Settings…’. The alternative option ‘here’ will take the sampling frequency specified in the combo box behind. Note that the sampling rate settings will only be applied if there is currently no sound file loaded. Use the main window command File/Close to close the currently loaded file.
Graphic Synthesizer

The graphic synthesizer supports the comfortable synthesis of complex signals by graphical specification of the parameter evolution. The synthesizer consists of a set of controlled sine generators, which allow emulating most animal sounds. In order to keep the operation easy, only those parameters needed for the current task will be displayed for graphical editing. The interactive generated parameter sets can be saved as arrangements. In contrast to the dialogue-synthesizer the graphic synthesizer is suited for complex sequences with several elements.

The graphic synthesizer window is started from the main window (menu "Tools"/"Synthesizer (graphical)"). To generate a new arrangement a previously stored one can be loaded and saved under a new name (menu "File"/"Save as"). Alternatively a new empty arrangement can be generated by the menu "File"/"New". At first the parameters to be controlled graphically should be selected using the Setup-dialogue. There the default parameter settings can be defined. The synthesizer window displays all active parameters in separated diagrams that have all a unique time axis. These diagrams are empty after executing the menu "File"/"New". A new sound element can be inserted by clicking into one of the diagrams at the desired start point and moving the mouse cursor to the desired end point while the mouse bottom is pressed. In all other parameter diagrams this new element will also be displayed. For these parameters the default values defined in the Setup-dialogue will be assigned. In an existing element a new
point can be inserted by clicking at the element. Existing points can be moved by the mouse. Entire elements can be moved by the mouse while the Shift key is pressed. Single points can also be edited numerically. To do this the reticule marker must be positioned onto the point to be edited. This can be done by mouse or by using the menu options (Next element ➤ , Next point ➤ , Previous point ◀ , Previous element ◀). The edit-fields are located on the top of the window.

The editing commands (menu Edit) allow editing several elements at once. A section marker can be activated by left-clicking while the Shift key is pressed. This marker allows to move the selected elements (while the Shift key is pressed). The Edit commands will work on the selected sections. The current marker can temporarily be disabled for editing the elements behind the marker (Edit/Disable marker).

For accurate drawing it is possible to zoom into the graphs (🔍 or menu "Tools"/"Zoom" and "Tools"/"View..." or by double clicking on the Y-axis). These techniques are very similar to other graphics applications.

The current state of the arrangement can by played back anytime by the menu "File"/"Play" 🎬. The synthesized arrangement can be inserted into the main window using the menu "File"/"Insert" 📊.

File

New

A new (empty) arrangement is generated.

Open...

A previously saved arrangement file (.ARR) is loaded. Alternatively, .ARR files can also be opened by drag & drop into either the SASLab Pro main window or into the Graphic Synthesizer window.

Save

The current arrangement is saved under the current name.
Save as...
The current arrangement is saved under a new name. The arrangement is saved in several files. The main file *.arr contains general information on the parameters used. Depending on the active parameters additional ASCII-files containing the data points are written. Each of these files consists of two columns. The first column represents the time in seconds, the second one represents the Y-values of the parameters in Hz, V, dB or %. These ASCII-files can be easily imported into spreadsheet applications (Excel) The extensions of the files depends on the type of parameter (ft, at, a1t, a2t, ... , a7t, fmt, fht, amt, aht; see Setup)

Setup
This dialogue allows selecting the active parameters to be edited graphically. The preset values of the parameters can be entered. Additionally the fadein and fadeout parameters can be chosen.

In this dialogue all synthesizer parameters are listed. The checkboxes on the left determine, whether the parameter should appear in the synthesizer window for graphical editing or not. The edit fields behind the parameter name allow specifying the preset values of each parameter. This value is taken when a new element is inserted, regardless whether the parameter is activated for graphical editing (checked) or not.

The synthesizer consists of three components: sine, noise and pulse train generator.

Sine generator

Fundamental frequency
Fundamental frequency in Hertz (Extension of the ASCII-parameter-file: ".ft")

Overall Amplitude
Absolute overall amplitude in Volts. (full scale: 1V) (Extension of the ASCII-parameter-file: ".at")

Relative amplitudes of harmonics [dB]
This section allows to activate and enter the default relative amplitudes of the fundamental and the harmonics. The amplitude values are expected in dB referenced to the **Overall amplitude.** The extensions of the ASCII-parameter-files are ".a0t" for the fundamental (F0), ".a1t" for the second harmonic, ".a2t" for the third harmonic and so on.
FM-frequency
Frequency-modulation frequency (Extension of the ASCII-parameter-file: ".fmt")

Frequency change of FM
Amount of frequency change. This parameter must be set to 0 Hz if no FM is desired. (Extension of the ASCII-parameter-file: ".fht")

AM-Frequency
Amplitude-modulation frequency (Extension of the ASCII-parameter-file: ".amt")

Modulation depth of AM
Amount of amplitude modulation. This parameter must be set to 0% if no AM is desired. (Extension of the ASCII-parameter-file: ".aht")

t on/off
Duration of fade-in and fade-out at the start and end of each element. Fading prevents perceptible noise when the sine generator is switched on or off. The list box behind allows selecting the shape of fading: linear, sine 1/2 (1/2 sine period) and sine 1/4 (1/4 sine period).

Averaging time for parameter smoothing
The time interval specified here determines the duration of a linear (FIR) filter that is applied to all parameter curves before the signal is finally synthesized, which will allows to produce more natural synthetic signals. A time interval of 0 s will completely inhibit this kind of smoothing. The maximum interval that can be realized is 1024 samples.

Anti-aliasing filtering
If this option is checked, signal components above the Nyquist frequency (half of the sample rate) will be rejected.

Noise generator
The noise generator produces amplitude-modulated white noise signals.

Noise amplitude
Amplitude of additional white noise in Volts. (full scale: 1V) (Extension of the ASCII-parameter-file: ".nt") This noise generator is independent from the sine generator. In other words, the parameters of the sine generator as Overall Amplitude and t on/off will not influence the noise generator. If only noise without harmonic components is desired, set the Overall Amplitude of the sine generator to zero.
Pulse train generator

The pulse train generator supports the generation of amplitude modulated pulse trains with pulse rates varying over time. The single pulse is supplied as a .wav file in 16-bit mono format. This pulse train generator is independent from the sine and noise generator. In other words, the parameters of the sine generator as Overall Amplitude and t on/off will not influence the noise generator. If only pulse train generation is desired, set the Overall Amplitude of the sine generator and the Noise amplitude of the noise generator to zero.

Pulse train amplitude envelope
Amplitude of the pulse train (full scale: 1V) (Extension of the ASCII-parameter-file: ".pta")

Pulse rate
Pulse rate in Hz (Extension of the ASCII-parameter-file: ".ptr"). The pulse rate is limited by the duration of the pulse file. The maximum overlap between consecutive pulses is 93.75%. Exceeding this overlap will produce unpredictable results. So the maximum pulse rate is \(fp = \frac{16}{\text{pulse duration}} \) (\(fp \) in Hz and pulse duration in seconds).

Pulse file...
This button launches a dialog box to select the .wav file containing the pulse to be used in pulse train synthesis. That .wav file must be in 16 bit mono format.

Default
This button resets all parameter entries.

Play
The current arrangement is synthesized and played back through the soundcard.

Insert
The current arrangement will be synthesized and inserted into the main window. Insertion takes place at the current insertion position (left margin of the marker).

Insert into clipboard
The current arrangement will be synthesized and copied into the clipboard.
Save into WAV file
The current arrangement will be synthesized and saved into a WAV file. The sampling rate for this file can be set from File/Sampling rate settings…

Sampling rate settings…
This dialog box allows defining the sampling rate of newly generated sound files. The option ‘in the Sound Card Settings’ will take the currently selected sampling frequency from the main window menu File/Sound Card Settings…’. The alternative option ‘here’ will take the sampling frequency specified in the combo box behind.

Open last arrangement on start
If this option is activated, the previous arrangement used at the last session will be loaded each time the Graphic Synthesizer is started.

Tools

Zoom
A rectangular section of the current view will be magnified. The mouse cursor changes into an up-arrow that allows selecting the desired section.

Unzoom
The entire signal is displayed.

Unzoom with zero
The entire signal including the zero line is displayed.

View
The visible section of whole signal is adjusted manually.

Grid
A grid is inserted or removed.

Next element
The marker is moved to the next element.

Next point
The marker is moved to the next point.
Previous point
The marker is moved to the previous point.

Previous element
The marker is moved to the previous element.

Delete point
The marked point will be deleted. Alternatively, a point can be deleted by right-clicking at the point and selecting the appearing popup menu entry.

Delete element
The marked element will be deleted. Alternatively, an element can be deleted by right-clicking at the element and selecting the appearing popup menu entry.

Lock time-axis
Disables editing of the time coordinates. This option should be activated, if the Y-coordinates of an existing element have to be edited, while the time-coordinates must be maintained.

Lock Y-axis
Disables editing of the Y-coordinates. This option should be activated, if the time-coordinates of an existing element have to be edited, while the Y-coordinates must be maintained (time-shifting of elements).

Scan harmonics from spectrogram based on fundamental

The amplitudes of the harmonics are extracted from the spectrogram that is visible in the Spectrogram window (use the option View/Display spectrogram to show that spectrogram). The fundamental frequency curve must have been specified before by manual drawing in the Fundamental frequency section or by the Scan frequency contour spectrogram function. If the signal to be scanned has many harmonics it may be useful to manually trace a higher harmonic instead of the fundamental itself. The menu option Scaling can then be used to multiply the frequency scale by a factor (e.g. 0.25 if the 4th harmonic was traced) in order to get more precise fundamental frequencies.
The accuracy of the scanning procedure is influenced by the quality of the spectrogram, its resolution and the precision of the fundamental frequency curve supplied. The precision of the fundamental frequency curve is especially important for high order harmonics. For scanning the 7th harmonic, the specified fundamental frequency is multiplied by 7 and the amplitude at that frequency position in the spectrogram is taken as the amplitude of the 7th harmonic.

number of harmonics to scan: This list box determines the number of harmonics, which will be traced. This value can be any integer between 0 and 7. Zero means that only the fundamental itself is scanned.

max. deviation A(t): This value determines the accuracy of the amplitude trace. It is expressed in percent of the maximum magnitude of the entire spectrogram. Larger values will produce fewer samples in the amplitude plot, which may simplify any further editing of the elements. In order to get maximum fidelity it is recommended to set this value to zero.

Scaling

This option allows to rescale the time and y parameters of the current arrangement. Time and y parameters can be adjusted independently. Additionally, it is possible to completely remove the modulation (e.g. AM or FM) from single parameters. If a section marker has been activated, only the selected elements will be modified.

multiply time axis by The time scale of all parameters is multiplied by this factor. Values greater than one will stretch the entire arrangement in time. Values between zero and one will compress the time axis.

Parameter (y axis) This listbox allows to choose the y parameter to be modified.

multiply by The selected parameter is multiplied by this factor (applies to all elements).

add This value (unit Hz, V or dB) is added to the selected parameter (applies to all elements). This value can be positive or negative.

normalize The selected parameter is normalized in such a way that its maximum value is set to the specified value. In case the overall option is not checked, the normalization will be done individually for each element.

remove modulation The modulation present in the selected parameter will be removed from each element. The resulting constant parameter will represent the average of the original (modulated) parameter within each element.
Single elements can be modified separately by right-clicking at the desired parameter of an element and selecting the popup menu item “Element Scaling”.

Copy contour…

The copy contour command allows to copy the contour of one parameter to another. For instance, it would be possible to move the course of the overall amplitude to the noise amplitude in order to create a synthetic noise signal that has the same amplitude modulation contour as previously scanned natural whistle.

Edit

The Edit commands allow moving or manipulating several elements at once. The elements to be processed have first to be selected by using the section marker. That marker can be activated by left-clicking while the Shift key is pressed. The time coordinates and the duration of this marker is displayed on the top of the Synthesizer window.

Copy
Copies the selected elements into an internal clipboard.

Paste
Inserts the content of the clipboard at the selected position.

Cut
Cuts the selected elements and copies them into the clipboard.

Delete
Deletes the selected elements without moving the following elements.

Append
Appends the content of the clipboard behind the last element.

Remove marker
Removes the marker.
Disable marker
This option temporarily disables the current marker. If this option is activated, the elements hidden by the marker can be edited while the position of the marker is still visible (for orientation).

View

Display Spectrogram
If this option is checked, the spectrogram of the Spectrogram window will be displayed as a background image. This can be useful when the synthetic signal should be derived from the spectrographic representation of a natural signal.

Display Instantaneous frequency / Zero crossing analysis
If this option is checked, the instantaneous frequency (or zero crossing analysis) plot from the One-dimensional Transformation window will be displayed as a background image. This can be useful when the synthetic signal should be derived from the frequency course of a natural signal.

Fundamental Frequency, Overall Amplitude, Rel. amplitude, ...
In this menu section all active parameters are listed. Those parameters visible in the synthesizer window are checked. Each parameter can temporarily hidden by un-checking the parameter in order to get more space for the other parameters. Alternatively, the parameters can be hidden by clicking on the parameter title on the graphs.
Example of AM

The example below shows the spectrogram of a synthesized signal with AM-frequency sweeping from 10 to 1000Hz. All other parameters are constant (Fundamental frequency = 5kHz, Modulation depth of AM = 100%)

![AM Spectrogram](image)

Example of FM

The example below shows the spectrogram of a synthesized signal with FM-frequency sweeping from 10 to 1000Hz. All other parameters are constant (Fundamental frequency = 5kHz, Frequency change of FM = 3kHz)

![FM Spectrogram](image)
Guidelines for making correct spectrograms

Over-modulation

Take care that the record level of the sound card is adjusted correctly. If the signal exceeds the dynamic range of the sound card, signal distortion will occur. This over-modulation is audible while playing back the recorded signal. On the spectrogram additional harmonic frequency components that are not part of the original signal can be seen.

Note that over-modulation can also happen during recording the sounds with your tape recorder.

Aliasing

A basic demand in digital signal processing is, that the sampling frequency must be at least twice the maximal frequency of the signal to be sampled. Most sound-cards have an onboard anti-aliasing filter (due to the type of analog-to-digital converter, which is usually a Sigma-Delta type) that suppresses all signal frequencies above one half of the sampling frequency. If there is no anti-aliasing filter all signal frequencies above one half of the sampling frequency will be transformed to lower frequencies. In

A sine sweep signal from 1 to 9 kHz sampled with 16 kHz. The end of sweep with 9 kHz occurs at 7 kHz in the spectrogram!
The Avisoft-CORRELATOR

The Avisoft-CORRELATOR supports the computation of sound-similarity-matrixes of spectrograms made by the Avisoft-SASLab Pro. This enables you to check the similarities of several spectrograms. All selected spectrograms are compared each other. Each comparison is done by sliding the two spectrograms past each other along the time axis. An additional sliding in frequency can be specified if small frequency deviations of the signals should be ignored. The correlation coefficients are computed for all time- (and frequency-) offsets. The peak value of the correlation coefficients is saved in a correlation matrix. Another application of the CORRELATOR is time and frequency aligned averaging of spectrograms.

How to use the Avisoft-CORRELATOR

The Avisoft-CORRELATOR is a separate application that is installed along with the SASLab Pro software. It can be found at All apps > Avisoft Bioacoustics > Avisoft-CORRELATOR. The executable file corr32.exe is located in the folder C:/Program Files (x86)/Avisoft Bioacoustics/SASLab Pro.

The spectrograms have to be saved in ASCII or Binary format using the "File"/"Data Export"/"Save ASCII/Binary Spectrogram" option of the Avisoft-SASLab spectrogram window. The ASCII-files must be saved with the extension ".txt". Binary spectrograms must have the extension .SON. All spectrograms to be correlated should have the same sampling frequency and the same spectrogram parameters. All spectrograms must be saved in a unique path.

After finishing the ASCII/Binary spectrogram generation in Avisoft-SASLab Pro, you can start the Avisoft-CORRELATOR. The following steps have to be done:

Select the files to be compared
First you have to specify the spectrogram files to be correlated. This is done by the menu ‘File’/‘Select...’.
In the edit box ‘Path:’ it is required to specify the path, where the spectrogram (or waveforms, envelopes or spectra) files are located. ASCII spectrogram files must have the extension *.txt. Binary spectrograms should have the extension *.son. The desired file format (*.TXT or *.SON) must be selected from the File format list box.

The list box titled Type of data allows to select the type of data that should be correlated:

- Spectrograms (.son, .txt) (default)
- Waveforms or Envelopes (.wav for .txt)
- Spectra (.txt)

The files that should be correlated must be selected from the
By clicking on the files listed in the file listbox you can select. Press the button ‘OK’ when you have finished the selection. As a result of the file selection an empty similarity-matrix will be displayed.

Start the correlation process / Defining the correlation parameters

Then you can start the correlation process by the menu "Analyze/"Start...". After the software has tested the selected files the "Correlation-Parameters" dialog box is displayed.

Here you have to specify the **sampling frequency** of the sound files the spectrograms have been created from, because this information is not part of the ASCII-spectrogram-files.

In order to remove low frequency disturbance signals, which would distort the correlation coefficients, you can specify the desired **cut-off-frequency**. All components of the spectrogram below the specified cut-off-frequency will be ignored.

If the signals to be correlated slightly differ in frequency no similarity would be found unless a tolerating **frequency deviation** is specified. In this case the two spectrograms to be correlated will be slid additionally along the frequency axis in order to find the true peak similarity. The number of correlation’s necessary to realize this tolerating behavior is displayed behind the line **resulting number of correlations**. Note that this will cause a multiplication of computing time! After
pressing the "OK"-button the similarity matrix is computed. This can take a very long amount of time depending on the sizes of the spectrograms and the specified correlation parameters.

You can cancel the correlation process before ending by pressing the "Cancel"-button at the top of the window.

The correlation can be repeated with the same files and different correlation parameters by resetting the correlation matrix (menu "Analyze/"Reset") and starting the correlation again using different parameters (menu "Analyze/"Start...").

Exporting the correlation matrix

The matrix of correlation coefficients displayed on the screen can be copied into the Windows clipboard by using the command "File"/"Copy Matrix". The matrix can also be saved (Save Matrix) or printed (Print Matrix). This allows the export of the matrix into other applications such as spreadsheet or statistical analysis programs.

Averaging of aligned spectrograms

The CORRELATOR can also be used to average several aligned spectrograms. This is done in two steps:

- Calculating the shift between the spectrograms to be averaged.
- Averaging of the spectrograms using the previously calculated shifts.

To enable this mode of operation, activate the menu option ‘Analyze’/‘Aligning mode’. Then proceed as described at Selecting the files to be processed. The command Analyze/Start will then compute the shifts between the selected files. The correlation coefficient, the X and Y shift (in pixel units) will be displayed for each file. Then use the command ‘File’/‘Average and Save aligned spectrograms’ to execute the averaging. You will be prompted for a file name for the averaged spectrogram (*.son).

Alternatively the command ‘File’/’Select, Align, Average and Save spectrograms...’ can be used to execute the entire process at once.

The resulting averaged spectrogram will have the same dimension as the last spectrogram in the list of selected source spectrograms. Any longer spectrograms on the list will be cropped to that size.
The averaged spectrogram (*.son) can be viewed in Avisoft-SASLab Pro using the main window command ‘Analyze’/‘Open Spectrogram...’ or ‘File’/‘Open Spectrogram...’ from the spectrogram window.
The correlation algorithm

The peak correlation coefficient displayed in the correlation matrix is defined as follows:

The two spectrograms are shifted incrementally past each other along the time axis. For every offset position the correlation coefficient is computed according to the following formula:

$$\phi_{XY} = \frac{\sum_{x} \sum_{y} ((a_{xy} - m_a) * (b_{xy} - m_b))}{\sqrt{\sum_{x} \sum_{y} (a_{xy} - m_a)^2 * \sum_{x} \sum_{y} (b_{xy} - m_b)^2}}$$

Where m_a and m_b are the mean values of the spectrograms. a_{xy} and b_{xy} are the intensities of the spectrogram points at the locations x,y.

The correlation coefficient is a value ranging from -1 to +1. A one means that the two spectrograms are identical. A zero means that there is no similarity between the spectrograms. Values below zero occur when the two spectrograms are inverse.

The peak value of the correlation coefficients of all shift-offsets between the two spectrograms is saved in the correlation matrix.

Discussion of the correlation method

If you use the Avisoft-CORRELATOR you should always keep in mind that the numerical correlation method used in the Avisoft-CORRELATOR delivers only correlation coefficients computed by a stupid mathematical algorithm. This algorithm cannot recognize complicated spectrogram structures like a human could do it.

For this reason the correlation method is suited for the following kinds of spectrograms only:

- The spectrogram should contain only one syllable. If there would be more than one syllable, the correlator would recognize similarities only if the distance between the syllables is exactly identical.
The spectrograms should be generated using small FFT lengths or (and) small frame-sizes to reduce the frequency resolution. High frequency resolution would prevent good results if there are any differences in frequency of two evidently similar spectrograms.

In many cases it is recommended to use parametric methods instead of this correlation method. For the parametric method such parameters as frequency and duration can be taken from the spectrogram using the measuring cursors or the Automatic Parameter Measurements facility of Avisoft-SASLab.
Tutorial

Opening sound files from a CompactFlash or Harddisk recorder

The new CompactFlash and Harddisk recorders (e.g. Marantz PMD670, PMD660, Fostex FR-2, Edirol R-09, Sound Devices 722) change the way how to transfer sound recordings into the PC for analysis. Because these recorders already save the sound recordings as common sound files (.WAV, (*.MP3)), the transfer (upload) of the recordings is very simple.

Once the recorder has been connected to the PC via its digital interface (either USB or FireWire), the recorder will appear on the PC as a standard mobile mass storage device (like any other external harddisk). So, there is no difference whether the sound files physically reside on the recorder or on the PC. However, in order to speed-up the sound analysis, it is recommended to copy (upload) the files first onto the computer harddisk (certainly a slow USB 1.1 interface might be too slow for a smooth work flow). Besides of this transfer speed issue, the sound file upload is also strongly recommended for archiving the recordings onto more cost-effective storage media (CD, DVD, external harddrives).

A separate Card Reader interface would be useful for downloading the data from the CF cards in case you are using a recorder with a slow USB 1.1 interface.

Avisoft-SASLab Pro provides various ways to open these .WAV files efficiently (either the original files directly from the recorder or the mirrored files from the harddisk):

Main Window

- Command File/Open...
- Command File/Browse...
- Drag&Drop from the Windows file manager window
- Command File/Specials/'Next file'; 'previous file' (default keyboard shortcuts Strg+N and Strg+P or the buttons < and >)
Spectrogram Window

These commands will load the WAV file and automatically create a spectrogram of the entire file.

- Command WavFile/Open...
- Drag&Drop from the Windows file manager window
- Command WavFile/'Next file'; 'previous file' (default keyboard shortcuts Strg+N and Strg+B or the buttons < and >)

Real Time Spectrograph Window

The WAV files opened here will be played back continuously (while the real-time spectrogram is displayed). So, this option is useful for scanning longer files. Use the command File/'Transfer buffer into main window' to pick out a sub-section out of the original large file. The Real Time Spectrograph Window is launched from the main window command File/'Real Time Spectrogram...'.

- Command Record/Start (input from file)...
- Drag&Drop from the Windows file manager window

Note that MP3 files are not supported by Avisoft-SASLab Pro due to the potential artifacts introduced by the lossy compression algorithm. For processing such compressed files it is necessary to convert them into uncompressed .wav files. This can be done for instance by using the free Lame/RazorLame decoder.

CompactFlash and Harddisk recorder usually allow to select the sample rate. The sample rate should be adopted to the frequency range of the sounds that you want to analyze (the sample rate should be at least about 250 % of the maximum signal frequency you are interested in). If you are unsure, then you should select a higher sample rate (at the expense of larger file sizes).
Measuring sound parameters from the spectrogram manually

There are several ways to measure sound parameters from the spectrogram:

The ‘Standard marker cursor’ allows to measure duration’s by left-clicking and dragging. The associated values are displayed at the right top corner of the spectrogram window. The current duration value can be exported as an ASCII string by File/Data export/Copy measured value or Copy t1, t1. Alternatively simply click at the top right cursor value frame. The ASCII string is copied into the clipboard and can be pasted from other applications.

Additionally, the single values can be automatically transferred into an Excel spreadsheet. This can be configured from File/Data export/’DDE- Parameters / Log file…’
In the ‘Standard marker cursor’ mode an additional frequency cursor can be activated by clicking at the area between left windows margin and frequency axis and dragging it to the right (or by Tools/Cursors/‘Insert bound frequency cursor’). This cursor moves along the peak frequency.

Another cursor available in the ‘Standard marker cursor’ is the frequency cursor that can be activated from Tools/Cursors/‘Insert frequency cursor’ or by clicking at the area above the spectrogram display and dragging the cursor down into the spectrogram. This cursor can be moved freely for precise frequency measurements.

A similar cursor for measuring harmonic frequency structures is available form Tools/Cursors/‘Insert harmonic frequency cursor’ or by pressing the shift key and clicking at the area above the spectrogram display and dragging the cursor down into the spectrogram.
The ‘Free reticule cursor’ is a thread cross cursor replacing the mouse cursor. In this mode time, frequency and amplitude can be measured. Left-clicking will export the current values. The ‘Bound reticule cursor’ is the same, except that the frequency thread moves along the peak frequency (the current vertical mouse cursor position is ignored).

The ‘Magic reticule cursor’ allows to track frequency contours in complex (harmonic) sounds. With the option “locate and measure entire elements” activated, several sound parameters as duration, max/min and start/end frequency can be measured quickly by placing the mouse cursor over the element to be analyzed.
Labels can be placed anywhere on the spectrogram. A short label text can be annotated to either a single point at a certain time/frequency location or to a time section (section label). Single point labels are annotated from Tools/Labels/’Insert labels’. Alternatively, his can be done right –clicking and selecting the associated popup menu item.

The coordinates of these labels can be exported from Tools/Labels/’Label settings…’ by the button ‘Copy’. This will copy the selected labels as an ASCII table into the clipboard, which can subsequently be pasted into an Excel spread sheet for instance.

Section labels can be used to create a specific grid for logging data at regular intervals with the ‘Free reticule cursor’. The cursor then snaps automatically into the temporal grid. This grid option can be activated from Tools/Labels/’Section labels grid…’ This may be especially useful for signals where automatic methods are not possible.
In order to enable comparisons between different sound files, the measurement cursors of several program instances can be linked together. For this purpose, several instances of the SASLab Pro software can be operated at the same time (e.g. by the command File/New Instance). The dialog Tools/Cursors/"Cursor linkage between Instances..." allows to activate this cursor linkage option. When the desired dialog items are selected and several instances of SASLab Pro are running, the corresponding cursors will move simultaneously in all instances, where the linkage option has been activated:
Measuring sound parameters from the spectrogram automatically

The success of the automatic measurements will heavily depend on the type of sounds, the quality of sound recordings and the configuration settings made under Tools/Automatic parameter measurements/’setup…’. The first and most essential step in configuring this tool is to establish a safe element separation. There are four options in the ‘Element separation’ section:

- **automatic (single threshold)** Use this option for sound files, where all elements nearly have the same amplitude.

- **automatic (two thresholds)** This option is suited for sound files containing elements with varying amplitudes.

- **automatic (three thresholds)** Use this option for sound files containing elements with varying amplitudes that require separate thresholds for detecting the start and end of each element.

- **interactively (section labels)** This option is appropriate for sounds where the automatic element separation is not possible.

- **automatic (whistle tracking)** This option is suited for detecting soft whistles in noisy sound recordings.
automatic (single threshold)

The single threshold is used for both detecting the elements and the determination of the start and end point of each element:

![Figure 2a: Single threshold element separation (option "relative to maximum" not activated).](image1)

Figure 2a: Single threshold element separation (option "relative to maximum" not activated).

![Figure 2b: Single threshold element separation (option "relative to maximum" activated).](image2)

Figure 2b: Single threshold element separation (option "relative to maximum" activated).

The point where the amplitude exceeds the threshold is assumed to be the start of an element. Similarly, the point, where the amplitude goes first below the threshold is the end point of the element.
The thresholds can be adjusted interactively. There is an option called "show threshold" that activates a graphic display, which might help to optimise the settings. The primary element separation threshold can easily be edited graphically (by dragging):

An additional hold time parameter prevents to recognize the end of an element in case the amplitude goes below the threshold for a short period of time only. For adjusting the threshold, it might also be useful to first set the ‘Hold time’ parameter to a small value. Then, if all elements are recognized properly, increase the hold time parameter in order to melt closely spaced related parts.

Figure 3: The ‘Hold time’ parameter of 5 ms is too low for these amplitude-modulated elements. The first, third and fourth elements are each recognized as two separate elements.
Figure 4: Increasing the ‘Hold time’ parameter to 50 ms provides satisfying results.

Figure 5: Larger amplitude differences lead to poor start and end point locations. In such cases use the ‘two thresholds’ option described below.
automatic (two thresholds)

The first threshold is used for element detection only. The second start/end threshold is used to determine start and end points. The specified relative start/end threshold is used to calculate an internal individual absolute threshold for each detected element:

![Figure 6: Two thresholds element separation](image)

Figure 6: Two thresholds element separation: The first absolute threshold for the element detection is shown as a continuous horizontal line. The short lines depict the second relative start/end threshold that is referenced to the maximum of each detected element. In this way, the automatically recognized element borders are independent from the absolute element amplitudes. This is especially important for vocalizations with high dynamic ranges (both loud and soft elements) or in recording situations with varying distances between the animal and microphone (e.g. flying bats). Adjusting the two parameters should be done in the following sequence: First use the ‘automatic (single threshold)’ mode to adjust the first absolute threshold for element detection. Modify this value until all elements are recognized safely. At this stage it does not matter, whether the element borders are recognized correctly. It is only important that there is a number displayed above each element:

![Figure 6: Adjusting the absolute element detection threshold](image)

Figure 6: Adjusting the absolute element detection threshold. Then switch back to the ‘automatic (two threshold)’ mode to adjust the second relative ‘start/end
threshold’. Start with high values (e. g. –5dB) and decrease the relative threshold (down to –10 ... - 20 dB), depending on the structure of your signals. Alternatively, adjusting the two thresholds can be done without switching into the single threshold mode. Then first set the ‘start/end threshold’ to 0 dB to find the correct absolute element detection threshold.

Figure 8: The relative start/end threshold of –17dB is too low. The reverberation noise between the elements prevents proper element separation at this low threshold.

Figure 8: Correctly recognized elements (using a start/end threshold of –11 dB), despite of the varying element amplitudes.
automatic (three thresholds)

This option is similar to the above two thresholds option, except that there are two separate thresholds for the localization of the start and the end of each element. This is certainly useful for sounds influenced by reverberation.
If there is too much noise that prevents the automatic recognition, you might try to remove that noise. If the noise does not overlap with the sounds of interest, then a simple high- or low-pass filter might help. It is possible to hide low frequencies on the spectrogram window from the command Display/'lower Cut-Off Frequency...'

In case the noise overlaps with the sound elements, then it would be possible to remove that noise manually by using the command Tools/Cursors/'Standard eraser cursor':

Figure 10: Noise prevents the proper element detection

Figure 11: Manually erasing the noise provides the desired result

Another option for rejecting broad-band noise is the Entropy option in the 'Post filter' section. The whistle tracking option described later might also help to handle noisy recordings.
In case the automatic element detection does not work satisfying for all elements, it is possible to edit the automatically detected element borders subsequently by clicking at the "edit>" button. The automatically detected element borders will be converted into section labels and the element separation method is set to 'interactively (section labels)'

interactively (section labels)

In some recordings the automatic threshold-based element separation may not work satisfying because of strong ambient noise or because of poor structured vocalizations. For such sounds, the element borders can be defined manually by inserting section labels. These section labels can be quickly inserted by left-clicking at the desired start point while the shift key is pressed. Then drag the end point of the label to the desired location and release the mouse button. The location of these labels can be altered subsequently by simple dragging. Section labels can be placed at various layers (layer 1...3 and total). However, for this application, the specific layer is not important.

Figure 12: Section labels have been placed at the top of the spectrogram.
automatic (whistle tracking)

This element separation method is useful for detecting soft whistle-like sounds in noisy sound recordings (certainly for analyzing USV’s by laboratory mice and rats). The implemented algorithm searches for steady signals having a relatively stable (peak) frequency course without rapid frequency modulations.

![Figure 12: Principle of the whistle-tracking algorithm](image)

The “max change” parameter is the tolerated maximum change of the peak frequency between two consecutive time bins on the spectrogram, expressed as the number of pixels on the spectrogram (frequency bins). This parameter should be set to a value between 1 and 4 pixels (depending on the time and frequency resolution of the spectrogram). For best results, this parameter should be set to the
The “whistles” button in the “Presets” section on the “Automatic Parameter measurements setup” dialog box provides appropriate settings to start with.

For proper function of the algorithm, the background noise should have a broad-band structure (only thermal noise of the microphone or noise caused by the movement of the animals on the substrate). Any regular harmonic noise (e.g. electromagnetic interference from technical equipment) may prevent a reliable detection.

Once the element separation described above is working satisfying, the desired parameters to be measured can be activated from the set-up dialog. See the manual for the details.

Another way for measuring frequency contours automatically is the spectrogram window command 'Tools'/'Scan frequency contour and amplitude envelope'.

The resulting frequency values can be obtained by executing the File/Save command of the Graphic Synthesizer. The ASCII file NEW.ft (or xxxxxxx.ft) contains the frequency values along with the associated time stamps.
Basic Analysis of rat or mouse USV's

This section describes the most common type of analysis on rat or mouse USV’s in behavioural and psychopharmacological studies. Such studies often require relatively simple descriptive statistics parameters such as the total number of calls within the observation interval, the mean call duration and the relative 'on' time (the sum of call duration's referenced to the observation interval).

1. Adjusting the spectrogram parameters from the main window command 'Analyze/'Spectrogram Parameters...'.

These settings will influence the time and frequency resolution of the spectrogram:

![Spectrogram Parameters]

It is recommended to keep the FFT size and the overlap as small as possible, which will lead to a faster processing speed. However, if you are interested in the fine structure of the calls, the overlap (for a higher temporal resolution) or the FFT size (for a higher frequency resolution) can be increased. The window type (FlatTop or Hamming) will also influence both frequency and time resolution.
2. Creating a spectrogram of the entire observation interval (e.g. 1 or 10 minutes) by clicking at the OK button (for subsequent analyses, you can immediately create a spectrogram from 'Analyze'/Create Spectrogram...').

3. Setting up the Automatic Parameter Measurements from the spectrogram window command 'Tools'/Automatic parameter measurements/Automatic parameter measurements setup...'. Click at the Presets button whistles in order to retrieve suited settings for detecting USV's.
It is crucial to adjust the 'Element separation' properly in order to detect all USV's safely. The "whistles" preset button on the right-hand side of the dialog box can be used to retrieve typical settings for the analysis of rat and mice USV's. Details on how to optimise the element (call) detection can be found in the tutorial on *Measuring sound parameters from the spectrogram automatically* (see page 248).

In order to improve the detection of soft USV's in recordings that contain either significant DC offsets or high levels of low-frequency noise, it is recommended to define a high-pass filter from the spectrogram window command *Display/Cut-Off Frequencies*. This is done automatically when the above mentioned *whistles* button has been clicked.

In some cases it might happen that not all USV's are recognized properly. In that case it would still be possible to edit the automatically detected calls manually. This can be done by clicking at the *edit>* button next to the *Element separation* list box on the *Automatic Parameter Measurements setup* dialog box, which will convert the detected elements into section labels. These section labels can be edited and deleted by mouse (drag the labels or right-click at them to delete the label by clicking at the *Delete* button on the *Label editing* popup dialog box). New labels for undetected calls can be added by left-clicking and dragging.
The descriptive statistics can be activated from the Statistics Settings button on the Automatic parameter measurements dialog box:

The results of the automated measurements will then be displayed in a separate window. These results can be copied from the command 'Export/Copy parameter measurements values' and 'Export/Copy parameter measurements statistics' into another application such as Excel.

For presentation purposes it is sometimes desired to create a slowed-down version of the original USV recordings that can be heard by humans. This can be accomplished as follows:
1. Launch the drop-down menu Edit > Format > Change Fileheader Sampling Frequency / Time expansion...
2. Select here a low sample rate (fs), such as 22050 or 11025 Hz.
3. Save the modified file from File > Save As...
Further Reading

Index

8<--16 Bit Conversion, 90
Add channels from file, 35
Additional Spectrogram Information, 144
Aliasing, 234
Analyze, 44
Autocorrelation, 55
Automatic parameter measurements, 165
Automatic parameter measurements, 193
Automatic recording, 215
Band Rejection Filter, 82
Bandpass, 87
Bandrejection Filter, 87
Bandwidth, 46, 209
Batch processing, 114
bext (BWF) Metadata, 127
Browse, 21
Buffer Size, 217
Calibration, 110
Cepstrum, 55
Change Volume, 76
Classification, 101, 184
Color Table, 146
Compress, 80
Configuration, 30
Copy, 76, 202
Copy ASCII-file, 204
Copy contour, 231
Copy cursor values, 205
Copy Envelope, 142
Copy Envelope Curve, 38
Copy measured value, 139
Copy Spectrogram Image, 135
Copy Spectrogram Image, entire, 135
Copy Spectrogram, ASCII-format, 142
Copy Spectrum, 142
Copy Spectrum, ASCII-format, 142
correlation algorithm, 239
correlation method, 239
CORRELATOR, 235
Create section labels from waveform events, 94
Create spectrogram, 44
Crosscorrelation, 55, 56
Cursor linkage between Instances, 157
Curve window, 201
Cut, 76
Data acquisition, 26
Data export, 139
DDE, 108, 205
DDE-Parameters, 139
Decimation Filter, 83
Delete, 78
Detect and classify waveform events, 73
Display, 143, 206
Display range, 206
Display-Parameter, 143
dXML database records, 123
Edit, 76, 212
element separation, 167
Energy, 72, 139
Enlarge Image, 148
Envelope, 59, 60, 218
Envelope Curve, 144
Envelope Curve Export Parameter, 38
Export label data, 100
Export-Parameters, 136
FadeIn, 77
FadeOut, 77
FFT-Length, 44
File, 21, 135, 202
File delete, 33
File Open Settings, 22
File properties, 35
File, next, 32
File, previous, 32
fileheader sampling frequency, 90
Filter, 82
FIR filter, 84
Frame, 45
Frequency Axis, 144
Frequency Domain Transformations, 87
Frequency Interval, 144
Frequency Shift, 87
Georeference labels, 97
Getting started, 19
Grid, 143, 206
Hard- & Software Requirements, 18
Heterodyned playback, 29
Hide buttons..., 147
Hide main window, 147
high Cut-Off-Frequency, 209
Highpass, 82, 87
Histogram, 57
Import Format, 34
Impulse Density Histogram, 57
Info about Clipboard, 78
Insert silence, 78
Installation procedure, 18
Instantaneous frequency, 59
Introduction, 18
label settings, 162
Labeling, 161
Labels, 94, 190, 211
Limit to, 78
Log-File, 139, 205
low Cut-Off-Frequency, 209
Lowpass, 82, 87
LPC analysis, 47, 54
Magic reticule cursor, 158
Magnitude spectrum, 53
main window, 21
Marker mode, 154
Marking of time sections, 43
Max Spectrum, 145
Maximum, 145, 208
Mean frequency, 145
Mean Frequency, 209
Mean Spectrum, 143, 144
measurement cursors, 154
measurement value export, 199
Metabase query, 132
Metadata, 123
Metadatabase, 127
Mix, 78
mXML measurements, 125
Normalize, 77
Normalize Envelope Curve, 51
Normalize to maximum, 212
Octave Analysis, 55
One dimensional transformations, 53
Open, 21
Overlap, 47
Overmodulation, 234
Overview-Parameter, 50
passive acoustic location, 72
Paste, 76
Peak-to-peak amplitude, 72
Play through RECORDER USGH / UltraSoundGate Player, 29
Playback, 28, 148
Playback settings, 28
post filter on elements, 171
Power spectrum, 54
Power Spectrum, 143, 212
Print, 202
Print Spectrogram Image, 135
Program description, 18
pulse, 61
Pulse Train Analysis, 134
pulse train generator, 227
Quartiles, 145, 209
Real Time Spectrogram, 26
Real Time Spectrograph Window, 213
Real Time Spectrum, 39
Real-time processing, 121
Real-time spectrum, 201
Re-assembling, 33
Record, 26
Reduce Image, 148
Remove channels, 36
Remove Cursor, 156
Remove Marker, 93, 156
Rename sound file, 25
Resampling, 90
Resolution, 46
Restore the original time scale, 91
Reverse, 78
RMS, 72
Root mean square, 59
Route UltraSoundGate DIO track (LTC) to the right playback channel, 30
Sampling frequency conversion, 90
Save, 202
Save ASCII-file, 204
Save Envelope Curve, 38
Save sound file, 24, 25
Save Spectrogram Image, 135
Save Spectrogram Image, entire, 135
Save Spectrogram, ASCII/Binary-format, 142
Scan for template spectrogram patterns, 74
Scroll-Mode, 218
Single Frequency, 144
Single Spectrum, 144
Smooth, 212
Sound card settings, 27
sound level measurements, 60
sound-similarity-matrix, 235
Spectral Characteristics, 208
Spectrogram, 145
Spectrogram output, 200
Spectrogram Window, 135
Spectrogram-Overview, 49
Spectrogram-Parameters, 44
Statistics, 188
Steps, 207
Stereo->Mono, 90

Synthesizer, 81
dialogue, 219
graphically, 223
Third-Octave Analysis, 55
Time Axis, 144
Time Domain Filter, 82
Time signal, 53
Time/Pitch Conversion, 91
Tools, 93, 148, 211
Touch Screen Options, 108
Trigger, 216
Trim, 76
Unzoom, 93, 206
Unzoom with zero, 206
User defined filter, 82, 88
Window, 45
Zero-crossing analysis, 59
Zoom, 93, 206
Zoom In, 93
Zoom Out, 93
Zoom out time axis, 148
Zoom previous, 206
Zoom Previous, 93

www.avisoft.com/downloads